Skip to content

Instantly share code, notes, and snippets.

@jackroos
Forked from fmassa/compute_flops.py
Created June 29, 2020 11:34
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save jackroos/97b44dd1e603835057f64cf73563a7cd to your computer and use it in GitHub Desktop.
Save jackroos/97b44dd1e603835057f64cf73563a7cd to your computer and use it in GitHub Desktop.
Utility functions used to compute flops in DETR.
# this is the main entrypoint
# as we describe in the paper, we compute the flops over the first 100 images
# on COCO val2017, and report the average result
import torch
import time
import torchvision
import numpy as np
import tqdm
from models import build_model
from datasets import build_dataset
from flop_count import flop_count
def get_dataset(coco_path):
"""
Gets the COCO dataset used for computing the flops on
"""
class DummyArgs:
pass
args = DummyArgs()
args.dataset_file = "coco"
args.coco_path = coco_path
args.masks = False
dataset = build_dataset(image_set='val', args=args)
return dataset
def warmup(model, inputs, N=10):
for i in range(N):
out = model(inputs)
torch.cuda.synchronize()
def measure_time(model, inputs, N=10):
warmup(model, inputs)
s = time.time()
for i in range(N):
out = model(inputs)
torch.cuda.synchronize()
t = (time.time() - s) / N
return t
def fmt_res(data):
return data.mean(), data.std(), data.min(), data.max()
# get the first 100 images of COCO val2017
PATH_TO_COCO = "/path/to/coco/"
dataset = get_dataset(PATH_TO_COCO)
images = []
for idx in range(100):
img, t = dataset[idx]
images.append(img)
device = torch.device('cuda')
results = {}
for model_name in ['detr_resnet50']:
model = torch.hub.load('facebookresearch/detr', model_name, pretrained=True)
model.to(device)
with torch.no_grad():
tmp = []
tmp2 = []
for img in tqdm.tqdm(images):
inputs = [img.to(device)]
res = flop_count(model, (inputs,))
t = measure_time(model, inputs)
tmp.append(sum(res.values()))
tmp2.append(t)
results[model_name] = {'flops': fmt_res(np.array(tmp)), 'time': fmt_res(np.array(tmp2))}
print('=============================')
print('')
for r in results:
print(r)
for k, v in results[r].items():
print(' ', k, ':', v)
# taken from detectron2 with a few modifications
# to include bmm and a few other ops
# https://github.com/facebookresearch/detectron2/blob/master/detectron2/utils/analysis.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import logging
import typing
from collections import Counter, defaultdict
import torch
import torch.nn as nn
from functools import partial
from jit_handles import (
addmm_flop_jit,
batchnorm_flop_jit,
conv_flop_jit,
einsum_flop_jit,
matmul_flop_jit,
bmm_flop_jit,
basic_binary_op_flop_jit,
rsqrt_flop_jit,
softmax_flop_jit,
dropout_flop_jit,
)
# A dictionary that maps supported operations to their flop count jit handles.
_SUPPORTED_OPS: typing.Dict[str, typing.Callable] = {
"aten::addmm": addmm_flop_jit,
"aten::_convolution": conv_flop_jit,
"aten::einsum": einsum_flop_jit,
"aten::matmul": matmul_flop_jit,
"aten::batch_norm": batchnorm_flop_jit,
"aten::bmm": bmm_flop_jit,
"aten::add": partial(basic_binary_op_flop_jit, name='aten::add'),
"aten::add_": partial(basic_binary_op_flop_jit, name='aten::add_'),
"aten::mul": partial(basic_binary_op_flop_jit, name='aten::mul'),
"aten::sub": partial(basic_binary_op_flop_jit, name='aten::sub'),
"aten::div": partial(basic_binary_op_flop_jit, name='aten::div'),
"aten::floor_divide": partial(basic_binary_op_flop_jit, name='aten::floor_divide'),
"aten::relu": partial(basic_binary_op_flop_jit, name='aten::relu'),
"aten::relu_": partial(basic_binary_op_flop_jit, name='aten::relu_'),
"aten::rsqrt": rsqrt_flop_jit,
"aten::softmax": softmax_flop_jit,
"aten::dropout": dropout_flop_jit,
}
# A list that contains ignored operations.
_IGNORED_OPS: typing.List[str] = [
"aten::Int",
"aten::__and__",
"aten::arange",
"aten::cat",
"aten::clamp",
"aten::clamp_",
"aten::contiguous",
"aten::copy_",
"aten::detach",
"aten::empty",
"aten::eq",
"aten::expand",
"aten::flatten",
"aten::floor",
"aten::full",
"aten::gt",
"aten::index",
"aten::index_put_",
"aten::max",
"aten::nonzero",
"aten::permute",
"aten::remainder",
"aten::reshape",
"aten::select",
"aten::size",
"aten::slice",
"aten::split_with_sizes",
"aten::squeeze",
"aten::t",
"aten::to",
"aten::transpose",
"aten::unsqueeze",
"aten::view",
"aten::zeros",
"aten::zeros_like",
"prim::Constant",
"prim::Int",
"prim::ListConstruct",
"prim::ListUnpack",
"prim::NumToTensor",
"prim::TupleConstruct",
]
_HAS_ALREADY_SKIPPED = False
def flop_count(
model: nn.Module,
inputs: typing.Tuple[object, ...],
whitelist: typing.Union[typing.List[str], None] = None,
customized_ops: typing.Union[
typing.Dict[str, typing.Callable], None
] = None,
) -> typing.DefaultDict[str, float]:
"""
Given a model and an input to the model, compute the Gflops of the given
model. Note the input should have a batch size of 1.
Args:
model (nn.Module): The model to compute flop counts.
inputs (tuple): Inputs that are passed to `model` to count flops.
Inputs need to be in a tuple.
whitelist (list(str)): Whitelist of operations that will be counted. It
needs to be a subset of _SUPPORTED_OPS. By default, the function
computes flops for all supported operations.
customized_ops (dict(str,Callable)) : A dictionary contains customized
operations and their flop handles. If customized_ops contains an
operation in _SUPPORTED_OPS, then the default handle in
_SUPPORTED_OPS will be overwritten.
Returns:
defaultdict: A dictionary that records the number of gflops for each
operation.
"""
# Copy _SUPPORTED_OPS to flop_count_ops.
# If customized_ops is provided, update _SUPPORTED_OPS.
flop_count_ops = _SUPPORTED_OPS.copy()
if customized_ops:
flop_count_ops.update(customized_ops)
# If whitelist is None, count flops for all suported operations.
if whitelist is None:
whitelist_set = set(flop_count_ops.keys())
else:
whitelist_set = set(whitelist)
# Torch script does not support parallell torch models.
if isinstance(
model,
(nn.parallel.distributed.DistributedDataParallel, nn.DataParallel),
):
model = model.module # pyre-ignore
assert set(whitelist_set).issubset(
flop_count_ops
), "whitelist needs to be a subset of _SUPPORTED_OPS and customized_ops."
assert isinstance(inputs, tuple), "Inputs need to be in a tuple."
# Compatibility with torch.jit.
if hasattr(torch.jit, "get_trace_graph"):
trace, _ = torch.jit.get_trace_graph(model, inputs)
trace_nodes = trace.graph().nodes()
else:
trace, _ = torch.jit._get_trace_graph(model, inputs)
trace_nodes = trace.nodes()
skipped_ops = Counter()
total_flop_counter = Counter()
for node in trace_nodes:
kind = node.kind()
if kind not in whitelist_set:
# If the operation is not in _IGNORED_OPS, count skipped operations.
if kind not in _IGNORED_OPS:
skipped_ops[kind] += 1
continue
handle_count = flop_count_ops.get(kind, None)
if handle_count is None:
continue
inputs, outputs = list(node.inputs()), list(node.outputs())
flops_counter = handle_count(inputs, outputs)
total_flop_counter += flops_counter
global _HAS_ALREADY_SKIPPED
if len(skipped_ops) > 0 and not _HAS_ALREADY_SKIPPED:
_HAS_ALREADY_SKIPPED = True
for op, freq in skipped_ops.items():
logging.warning("Skipped operation {} {} time(s)".format(op, freq))
# Convert flop count to gigaflops.
final_count = defaultdict(float)
for op in total_flop_counter:
final_count[op] = total_flop_counter[op] / 1e9
return final_count
# taken from detectron2 / fvcore with a few modifications
# https://github.com/facebookresearch/detectron2/blob/master/detectron2/utils/analysis.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import typing
from collections import Counter, OrderedDict
import numpy as np
from numpy import prod
from itertools import zip_longest
def get_shape(val: object) -> typing.List[int]:
"""
Get the shapes from a jit value object.
Args:
val (torch._C.Value): jit value object.
Returns:
list(int): return a list of ints.
"""
if val.isCompleteTensor(): # pyre-ignore
r = val.type().sizes() # pyre-ignore
if not r:
r = [1]
return r
elif val.type().kind() in ("IntType", "FloatType"):
return [1]
else:
raise ValueError()
def addmm_flop_jit(
inputs: typing.List[object], outputs: typing.List[object]
) -> typing.Counter[str]:
"""
This method counts the flops for fully connected layers with torch script.
Args:
inputs (list(torch._C.Value)): The input shape in the form of a list of
jit object.
outputs (list(torch._C.Value)): The output shape in the form of a list
of jit object.
Returns:
Counter: A Counter dictionary that records the number of flops for each
operation.
"""
# Count flop for nn.Linear
# inputs is a list of length 3.
input_shapes = [get_shape(v) for v in inputs[1:3]]
# input_shapes[0]: [batch size, input feature dimension]
# input_shapes[1]: [batch size, output feature dimension]
assert len(input_shapes[0]) == 2
assert len(input_shapes[1]) == 2
batch_size, input_dim = input_shapes[0]
output_dim = input_shapes[1][1]
flop = batch_size * input_dim * output_dim
flop_counter = Counter({"addmm": flop})
return flop_counter
def bmm_flop_jit(inputs, outputs):
# Count flop for nn.Linear
# inputs is a list of length 3.
input_shapes = [get_shape(v) for v in inputs]
# input_shapes[0]: [batch size, input feature dimension]
# input_shapes[1]: [batch size, output feature dimension]
assert len(input_shapes[0]) == 3
assert len(input_shapes[1]) == 3
T, batch_size, input_dim = input_shapes[0]
output_dim = input_shapes[1][2]
flop = T * batch_size * input_dim * output_dim
flop_counter = Counter({"bmm": flop})
return flop_counter
def basic_binary_op_flop_jit(inputs, outputs, name):
input_shapes = [get_shape(v) for v in inputs]
# for broadcasting
input_shapes = [s[::-1] for s in input_shapes]
max_shape = np.array(list(zip_longest(*input_shapes, fillvalue=1))).max(1)
flop = prod(max_shape)
flop_counter = Counter({name: flop})
return flop_counter
def rsqrt_flop_jit(inputs, outputs):
input_shapes = [get_shape(v) for v in inputs]
flop = prod(input_shapes[0]) * 2
flop_counter = Counter({"rsqrt": flop})
return flop_counter
def dropout_flop_jit(inputs, outputs):
input_shapes = [get_shape(v) for v in inputs[:1]]
flop = prod(input_shapes[0])
flop_counter = Counter({"dropout": flop})
return flop_counter
def softmax_flop_jit(inputs, outputs):
# from https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/profiler/internal/flops_registry.py
input_shapes = [get_shape(v) for v in inputs[:1]]
flop = prod(input_shapes[0]) * 5
flop_counter = Counter({'softmax': flop})
return flop_counter
def _reduction_op_flop_jit(inputs, outputs, reduce_flops=1, finalize_flops=0):
input_shapes = [get_shape(v) for v in inputs]
output_shapes = [get_shape(v) for v in outputs]
in_elements = prod(input_shapes[0])
out_elements = prod(output_shapes[0])
num_flops = (in_elements * reduce_flops
+ out_elements * (finalize_flops - reduce_flops))
return num_flops
def conv_flop_count(
x_shape: typing.List[int],
w_shape: typing.List[int],
out_shape: typing.List[int],
) -> typing.Counter[str]:
"""
This method counts the flops for convolution. Note only multiplication is
counted. Computation for addition and bias is ignored.
Args:
x_shape (list(int)): The input shape before convolution.
w_shape (list(int)): The filter shape.
out_shape (list(int)): The output shape after convolution.
Returns:
Counter: A Counter dictionary that records the number of flops for each
operation.
"""
batch_size, Cin_dim, Cout_dim = x_shape[0], w_shape[1], out_shape[1]
out_size = prod(out_shape[2:])
kernel_size = prod(w_shape[2:])
flop = batch_size * out_size * Cout_dim * Cin_dim * kernel_size
flop_counter = Counter({"conv": flop})
return flop_counter
def conv_flop_jit(
inputs: typing.List[object], outputs: typing.List[object]
) -> typing.Counter[str]:
"""
This method counts the flops for convolution using torch script.
Args:
inputs (list(torch._C.Value)): The input shape in the form of a list of
jit object before convolution.
outputs (list(torch._C.Value)): The output shape in the form of a list
of jit object after convolution.
Returns:
Counter: A Counter dictionary that records the number of flops for each
operation.
"""
# Inputs of Convolution should be a list of length 12. They represent:
# 0) input tensor, 1) convolution filter, 2) bias, 3) stride, 4) padding,
# 5) dilation, 6) transposed, 7) out_pad, 8) groups, 9) benchmark_cudnn,
# 10) deterministic_cudnn and 11) user_enabled_cudnn.
assert len(inputs) == 12
x, w = inputs[:2]
x_shape, w_shape, out_shape = (
get_shape(x),
get_shape(w),
get_shape(outputs[0]),
)
return conv_flop_count(x_shape, w_shape, out_shape)
def einsum_flop_jit(
inputs: typing.List[object], outputs: typing.List[object]
) -> typing.Counter[str]:
"""
This method counts the flops for the einsum operation. We currently support
two einsum operations: "nct,ncp->ntp" and "ntg,ncg->nct".
Args:
inputs (list(torch._C.Value)): The input shape in the form of a list of
jit object before einsum.
outputs (list(torch._C.Value)): The output shape in the form of a list
of jit object after einsum.
Returns:
Counter: A Counter dictionary that records the number of flops for each
operation.
"""
# Inputs of einsum should be a list of length 2.
# Inputs[0] stores the equation used for einsum.
# Inputs[1] stores the list of input shapes.
assert len(inputs) == 2
equation = inputs[0].toIValue() # pyre-ignore
# Get rid of white space in the equation string.
equation = equation.replace(" ", "")
# Re-map equation so that same equation with different alphabet
# representations will look the same.
letter_order = OrderedDict((k, 0) for k in equation if k.isalpha()).keys()
mapping = {ord(x): 97 + i for i, x in enumerate(letter_order)}
equation = equation.translate(mapping)
input_shapes_jit = inputs[1].node().inputs() # pyre-ignore
input_shapes = [get_shape(v) for v in input_shapes_jit]
if equation == "abc,abd->acd":
n, c, t = input_shapes[0]
p = input_shapes[-1][-1]
flop = n * c * t * p
flop_counter = Counter({"einsum": flop})
return flop_counter
elif equation == "abc,adc->adb":
n, t, g = input_shapes[0]
c = input_shapes[-1][1]
flop = n * t * g * c
flop_counter = Counter({"einsum": flop})
return flop_counter
else:
raise NotImplementedError("Unsupported einsum operation.")
def matmul_flop_jit(
inputs: typing.List[object], outputs: typing.List[object]
) -> typing.Counter[str]:
"""
This method counts the flops for matmul.
Args:
inputs (list(torch._C.Value)): The input shape in the form of a list of
jit object before matmul.
outputs (list(torch._C.Value)): The output shape in the form of a list
of jit object after matmul.
Returns:
Counter: A Counter dictionary that records the number of flops for each
operation.
"""
# Inputs should be a list of length 2.
# Inputs contains the shapes of two matrices.
input_shapes = [get_shape(v) for v in inputs]
assert len(input_shapes) == 2
assert len(input_shapes[1]) == 2
assert input_shapes[0][-1] == input_shapes[1][0]
batch_dim = input_shapes[0][0]
m1_dim, m2_dim = input_shapes[1]
flop = m1_dim * m2_dim * batch_dim
flop_counter = Counter({"matmul": flop})
return flop_counter
def batchnorm_flop_jit(
inputs: typing.List[object], outputs: typing.List[object]
) -> typing.Counter[str]:
"""
This method counts the flops for batch norm.
Args:
inputs (list(torch._C.Value)): The input shape in the form of a list of
jit object before batch norm.
outputs (list(torch._C.Value)): The output shape in the form of a list
of jit object after batch norm.
Returns:
Counter: A Counter dictionary that records the number of flops for each
operation.
"""
# Inputs[0] contains the shape of the input.
input_shape = get_shape(inputs[0])
assert 2 <= len(input_shape) <= 5
flop = prod(input_shape) * 4
flop_counter = Counter({"batchnorm": flop})
return flop_counter
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment