Created
March 18, 2011 16:05
A possible improvement on the kruskals-weave.rb algorithm that allows fully adjacent crossings.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -------------------------------------------------------------------- | |
# An implementation of a "weave" maze generator. Weave mazes are those | |
# with passages that pass both over and under other passages. The | |
# technique used in this program was described to me by Robin Houston, | |
# and works by first decorating the blank grid with the over/under | |
# crossings, and then using Kruskal's algorithm to fill out the rest | |
# of the grid. (Kruskal's is very well-suited to this approach, since | |
# it treats the cells as separate sets and joins them together.) | |
# -------------------------------------------------------------------- | |
# NOTE: the display routine used in this script requires a terminal | |
# that supports ANSI escape sequences. Windows users, sorry. :( | |
# -------------------------------------------------------------------- | |
# -------------------------------------------------------------------- | |
# 1. Allow the maze to be customized via command-line parameters | |
# -------------------------------------------------------------------- | |
width = (ARGV[0] || 10).to_i | |
height = (ARGV[1] || width).to_i | |
density = (ARGV[2] || 50).to_i | |
seed = (ARGV[3] || rand(0xFFFF_FFFF)).to_i | |
delay = (ARGV[4] || 0.01).to_f | |
srand(seed) | |
# -------------------------------------------------------------------- | |
# 2. Set up constants to aid with describing the passage directions | |
# -------------------------------------------------------------------- | |
N, S, E, W, U = 0x1, 0x2, 0x4, 0x8, 0x10 | |
DX = { E => 1, W => -1, N => 0, S => 0 } | |
DY = { E => 0, W => 0, N => -1, S => 1 } | |
OPPOSITE = { E => W, W => E, N => S, S => N } | |
# -------------------------------------------------------------------- | |
# 3. Data structures and methods to assist the algorithm | |
# -------------------------------------------------------------------- | |
EW, NS, SE, SW, NE, NW = [0x80, 0x82, 0x8C, 0x90, 0x94, 0x98].map { |v| "\xE2\x94#{v.chr}" } | |
NSE, NSW, EWS, EWN = [0x9C, 0xA4, 0xAC, 0xB4].map { |v| "\xE2\x94#{v.chr}" } | |
TILES = { | |
0 => ["\e[47m \e[m", "\e[47m \e[m"], | |
N => ["#{NS} #{NS}", "#{NE}#{EW}#{NW}"], | |
S => ["#{SE}#{EW}#{SW}", "#{NS} #{NS}"], | |
E => ["#{SE}#{EW}#{EW}", "#{NE}#{EW}#{EW}"], | |
W => ["#{EW}#{EW}#{SW}", "#{EW}#{EW}#{NW}"], | |
N|S => ["#{NS} #{NS}", "#{NS} #{NS}"], | |
N|W => ["#{NW} #{NS}", "#{EW}#{EW}#{NW}"], | |
N|E => ["#{NS} #{NE}", "#{NE}#{EW}#{EW}"], | |
S|W => ["#{EW}#{EW}#{SW}", "#{SW} #{NS}"], | |
S|E => ["#{SE}#{EW}#{EW}", "#{NS} #{SE}"], | |
E|W => ["#{EW}#{EW}#{EW}", "#{EW}#{EW}#{EW}"], | |
N|S|E => ["#{NS} #{NE}", "#{NS} #{SE}"], | |
N|S|W => ["#{NW} #{NS}", "#{SW} #{NS}"], | |
E|W|N => ["#{NW} #{NE}", "#{EW}#{EW}#{EW}"], | |
E|W|S => ["#{EW}#{EW}#{EW}", "#{SW} #{SE}"], | |
N|S|E|W => ["#{NW} #{NE}", "#{SW} #{SE}"], | |
N|S|U => ["#{NSW} #{NSE}", "#{NSW} #{NSE}"], | |
E|W|U => ["#{EWN}#{EW}#{EWN}", "#{EWS}#{EW}#{EWS}"] | |
} | |
def display_maze(grid, sets, show_sets=false) | |
print "\e[H" # move to upper-left | |
grid.each_with_index do |row, y| | |
2.times do |i| | |
row.each { |cell| print TILES[cell][i] } | |
if show_sets && i == 1 | |
print " " | |
sets[y].each { |set| print " %2s" % set.root.id.to_s(36) } | |
end | |
puts | |
end | |
end | |
end | |
class Tree | |
attr_accessor :parent | |
attr_reader :id | |
@@__next_id = -1 | |
def self.next_id | |
@@__next_id += 1 | |
end | |
def initialize | |
@parent = nil | |
@id = self.class.next_id | |
end | |
def root | |
@parent ? @parent.root : self | |
end | |
def connected?(tree) | |
root == tree.root | |
end | |
def connect(tree) | |
tree.root.parent = self | |
end | |
end | |
def next_non_U(grid, sets, x, y, dx, dy) | |
while (grid[y][x] & U) != 0 | |
x += dx | |
y += dy | |
end | |
return [sets[y][x], x, y] | |
end | |
grid = Array.new(height) { Array.new(width, 0) } | |
sets = Array.new(height) { Array.new(width) { Tree.new } } | |
# build the list of edges | |
edges = [] | |
height.times do |y| | |
width.times do |x| | |
edges << [x, y, N] if y > 0 | |
edges << [x, y, W] if x > 0 | |
end | |
end | |
edges = edges.sort_by{rand} | |
# -------------------------------------------------------------------- | |
# 4. Build the over/under locations | |
# -------------------------------------------------------------------- | |
print "\e[2J" # clear the screen | |
1.upto(height-2) do |cy| | |
1.upto(width-2) do |cx| | |
next unless rand(100) < density | |
if rand(2) == 0 | |
grid[cy][cx] = E|W|U | |
else | |
grid[cy][cx] = N|S|U | |
end | |
ex, ey = cx+1, cy | |
sx, sy = cx, cy+1 | |
edges.delete_if do |x, y, dir| | |
(x == cx && y == cy) || | |
(x == ex && y == ey && dir == W) || | |
(x == sx && y == sy && dir == N) | |
end | |
display_maze(grid, sets) | |
sleep(delay) | |
end | |
end | |
puts | |
puts "--- PHASE 1 DONE; PRESS ENTER TO START PHASE 2 ---" | |
STDIN.gets | |
1.upto(height-2) do |cy| | |
1.upto(width-2) do |cx| | |
next if (grid[cy][cx] & U) == 0 | |
nx, ny = cx, cy-1 | |
wx, wy = cx-1, cy | |
ex, ey = cx+1, cy | |
sx, sy = cx, cy+1 | |
north_set, nnx, nny = next_non_U(grid, sets, nx, ny, 0, -1) | |
south_set, ssx, ssy = next_non_U(grid, sets, sx, sy, 0, +1) | |
west_set, wwx, wwy = next_non_U(grid, sets, wx, wy, -1, 0) | |
east_set, eex, eey = next_non_U(grid, sets, ex, ey, +1, 0) | |
north_set.connect(south_set) unless north_set.connected?(south_set) | |
west_set.connect(east_set) unless west_set.connected?(east_set) | |
grid[nny][nnx] |= S | |
grid[ssy][ssx] |= N | |
grid[wwy][wwx] |= E | |
grid[eey][eex] |= W | |
display_maze(grid, sets) | |
sleep(delay) | |
end | |
end | |
puts | |
puts "--- PHASE 2 DONE; PRESS ENTER TO START PHASE 3 ---" | |
STDIN.gets | |
print "\e[2J" # clear the screen | |
# -------------------------------------------------------------------- | |
# 5. Kruskal's algorithm | |
# -------------------------------------------------------------------- | |
until edges.empty? | |
x, y, direction = edges.pop | |
nx, ny = x + DX[direction], y + DY[direction] | |
set1, set2 = sets[y][x], sets[ny][nx] | |
unless set1.connected?(set2) | |
display_maze(grid, sets) | |
sleep(delay) | |
set1.connect(set2) | |
grid[y][x] |= direction | |
grid[ny][nx] |= OPPOSITE[direction] | |
end | |
end | |
display_maze(grid, sets) | |
# -------------------------------------------------------------------- | |
# 6. Show the parameters used to build this maze, for repeatability | |
# -------------------------------------------------------------------- | |
puts "#{$0} #{width} #{height} #{density} #{seed}" |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment