- Compile the program in gcc with debug symbols enabled (
-g
) - Do NOT strip the binary
- To generate assembly code using gcc use the -S option:
gcc -S hello.c
- Useful options
objdump --help
-d, --disassemble Display assembler contents of executable sections
-S, --source Intermix source code with disassembly
-l, --line-numbers Include line numbers and filenames in output
- To analyze a binary, run:
objdump -d /path/to/binary
- Disassemble
$ gdb -q ./a.out
Reading symbols from ./a.out...(no debugging symbols found)...done.
(gdb) info functions
All defined functions:
Non-debugging symbols:
0x00000000004003a8 _init
0x00000000004003e0 __libc_start_main@plt
0x00000000004003f0 __gmon_start__@plt
0x0000000000400400 _start
0x0000000000400430 deregister_tm_clones
0x0000000000400460 register_tm_clones
0x00000000004004a0 __do_global_dtors_aux
0x00000000004004c0 frame_dummy
0x00000000004004f0 fce
0x00000000004004fb main
0x0000000000400510 __libc_csu_init
0x0000000000400580 __libc_csu_fini
0x0000000000400584 _fini
(gdb) disassemble main
Dump of assembler code for function main:
0x00000000004004fb <+0>: push %rbp
0x00000000004004fc <+1>: mov %rsp,%rbp
0x00000000004004ff <+4>: sub $0x10,%rsp
0x0000000000400503 <+8>: callq 0x4004f0 <fce>
0x0000000000400508 <+13>: mov %eax,-0x4(%rbp)
0x000000000040050b <+16>: mov -0x4(%rbp),%eax
0x000000000040050e <+19>: leaveq
0x000000000040050f <+20>: retq
End of assembler dump.
(gdb) disassemble /m main // update: /m is deprecated, use /s
Dump of assembler code for function main:
9 {
0x00000000004004fb <+0>: push %rbp
0x00000000004004fc <+1>: mov %rsp,%rbp
0x00000000004004ff <+4>: sub $0x10,%rsp
10 int x = fce ();
0x0000000000400503 <+8>: callq 0x4004f0 <fce>
0x0000000000400508 <+13>: mov %eax,-0x4(%rbp)
11 return x;
0x000000000040050b <+16>: mov -0x4(%rbp),%eax
12 }
0x000000000040050e <+19>: leaveq
0x000000000040050f <+20>: retq
End of assembler dump.
(gdb)
The /m
option in gdb is similar to option -S
in objdump.
- Disassemble by line range
(gdb) info line main
Line 3 of "main.c" starts at address 0x401050 <main> and ends at 0x401075 <main+
(gdb) disas 0x401050 0x401075
Dump of assembler code from 0x401050 to 0x401075:
0x00401050 <main+0>: push %ebp
0x00401051 <main+1>: mov %esp,%ebp
0x00401053 <main+3>: sub $0x18,%esp
0x00401056 <main+6>: and $0xfffffff0,%esp
0x00401059 <main+9>: mov $0x0,%eax
0x0040105e <main+14>: add $0xf,%eax
0x00401061 <main+17>: add $0xf,%eax
0x00401064 <main+20>: shr $0x4,%eax
0x00401067 <main+23>: shl $0x4,%eax
0x0040106a <main+26>: mov %eax,-0xc(%ebp)
0x0040106d <main+29>: mov -0xc(%ebp),%eax
0x00401070 <main+32>: call 0x4010c4 <_alloca>
- Examine as instructions
(gdb) x/i 0xdeadbeef
- Show assembly instructions executed
(gdb) layout asm
┌───────────────────────────────────────────────────────────────────────────┐
│0x7ffff740d756 <__libc_start_main+214> mov 0x39670b(%rip),%rax #│
│0x7ffff740d75d <__libc_start_main+221> mov 0x8(%rsp),%rsi │
│0x7ffff740d762 <__libc_start_main+226> mov 0x14(%rsp),%edi │
│0x7ffff740d766 <__libc_start_main+230> mov (%rax),%rdx │
│0x7ffff740d769 <__libc_start_main+233> callq *0x18(%rsp) │
>│0x7ffff740d76d <__libc_start_main+237> mov %eax,%edi │
│0x7ffff740d76f <__libc_start_main+239> callq 0x7ffff7427970 <exit> │
│0x7ffff740d774 <__libc_start_main+244> xor %edx,%edx │
│0x7ffff740d776 <__libc_start_main+246> jmpq 0x7ffff740d6b9 <__libc_start│
│0x7ffff740d77b <__libc_start_main+251> mov 0x39ca2e(%rip),%rax #│
│0x7ffff740d782 <__libc_start_main+258> ror $0x11,%rax │
│0x7ffff740d786 <__libc_start_main+262> xor %fs:0x30,%rax │
│0x7ffff740d78f <__libc_start_main+271> callq *%rax │
└───────────────────────────────────────────────────────────────────────────┘
multi-thre process 3718 In: __libc_start_main Line: ?? PC: 0x7ffff740d76d
#3 0x00007ffff7466eb5 in _IO_do_write () from /lib/x86_64-linux-gnu/libc.so.6
#4 0x00007ffff74671ff in _IO_file_overflow ()
from /lib/x86_64-linux-gnu/libc.so.6
#5 0x0000000000408756 in ?? ()
#6 0x0000000000403980 in ?? ()
#7 0x00007ffff740d76d in __libc_start_main ()
from /lib/x86_64-linux-gnu/libc.so.6
(gdb)
- When gdb stops, Display the disassembly of the next instruction (manually)
display/i $pc
x/i $pc
(gdb) help x
Examine memory: x/FMT ADDRESS.
ADDRESS is an expression for the memory address to examine.
FMT is a repeat count followed by a format letter and a size letter.
Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),
t(binary), f(float), a(address), i(instruction), c(char), s(string)
and z(hex, zero padded on the left).
Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).
The specified number of objects of the specified size are printed
according to the format.
Defaults for format and size letters are those previously used.
Default count is 1. Default address is following last thing printed
with this command or "print".
(gdb) x/10z 0x74c18b
0x74c18b: 0x6d 0x61 0x78 0x5f 0x63 0x68 0x61 0x72
0x74c193: 0x73 0x5f
(gdb) x/10c 0x74c18b
0x74c18b: 109 'm' 97 'a' 120 'x' 95 '_' 99 'c' 104 'h' 97 'a' 114 'r'
0x74c193: 115 's' 95 '_'
(gdb) x/xb 0x74c18b
0x74c18b: 0x6d
(gdb) x/20b 0x74c18b
0x74c18b: 0x6d 0x61 0x78 0x5f 0x63 0x68 0x61 0x72
0x74c193: 0x73 0x5f 0x66 0x69 0x6c 0x65 0x6e 0x61
0x74c19b: 0x6d 0x65 0x5f 0x78
- Disassemble the entire next line when gdb stops (automatically)
set disassemble-next-line on
- Show the backtrace stack
bt
info s
bt full
- Show threads running and swithch to thread
n
info threads
thread n
- Select frame
n
frame n
- Print data
info registers
info all-registers // useful for platform-specific regs
info registers r14
info locals
info args
info variables // all global and static variable names
info variables regex // global and static variables matching regex pattern
p $r14
p local_var_or_arg
(gdb) break main
(gdb) p &var // prints address of local var in main()
(gdb) break fun_1
(gdb) p &age // prints address of local var in fun_1()
(gdb) x/i $pc
=> 0x403cc0 <xstrlcpy+336>: movdqa (%r14,%rcx,1),%xmm0
(gdb) p $xmm0
$7 = {v4_float = {0, 0, -nan(0x7fff00), 2.35098856e-38}, v2_double = {0, 7.2911220195561903e-304}, v16_int8 = {0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, 0}, v8_int16 = {0, 0, 0, 0,
-256, -1, -1, 255}, v4_int32 = {0, 0, -256, 16777215}, v2_int64 = {0, 72057594037927680}, uint128 = 0x00ffffffffffff000000000000000000}
- grep a symbol
readelf -s a.out --wide | grep token
- Print the contents of rodata section as strings
readelf -p '.rodata' a.out
-
Run a program in gdb with args
gdb --args exe arg1 arg2 arg3
-
Pipe input to a program with GDB
gdb exe (gdb) run < input
-
Attach to a running process
gdb -p PID
The output of objdump and GDB? GNU assembler syntax aka at&t syntax. You may be able to output it as Intel syntax (basically NASM, MASM uses Intel syntax too, but I've never tried it).