I hereby claim:
- I am jasondavies on github.
- I am jasondavies (https://keybase.io/jasondavies) on keybase.
- I have a public key whose fingerprint is 341D 39FF 0F5D 07C5 3BE7 9A5D BAE3 9383 18C9 0D61
To claim this, I am signing this object:
Platform: Apple | |
Device: Apple M3 Max | |
Driver version : 1.2 1.0 (Macintosh) | |
Compute units : 40 | |
Clock frequency : 1000 MHz | |
Global memory bandwidth (GBPS) | |
float : 361.17 | |
float2 : 380.13 |
I contributed to the Semaphore Trusted Setup Multi-Party Ceremony. | |
The following are my contribution signatures: | |
Circuit: semaphore16 | |
Contributor # 69 | |
Hash: b67179d2 d07fdec2 aab46b63 58741764 | |
077f05ca b5171f9b c614ba26 7e20876d | |
065e2fde e3355c26 6f4f57b0 ec907e4e | |
58df82e0 993b3cb0 6ba33281 7f27de8b | |
I hereby claim:
To claim this, I am signing this object:
A test for wrapping using the d3.geo.tile plugin.
Based on Mike Bostock’s example.
A version of Mike Bostock’s hexbin example, modified to use hexagons rotated by 90°.
Aside from rotating the hexagon primitives, the only other change is to swap the meaning of x
and y
, for all inputs and outputs of the plugin.
.DS_Store | |
build | |
node_modules |
<!DOCTYPE html> | |
<meta charset="utf-8"> | |
<style> | |
.voronoi { | |
fill-opacity: .5; | |
} | |
.delaunay { |
<!DOCTYPE html> | |
<meta charset="utf-8"> | |
<style> body { font-family: sans-serif; } </style> | |
<body> | |
<script src="require.js"></script> | |
<script> | |
require.config({ | |
paths: { | |
d3: "http://d3js.org/d3.v3.min" | |
} |
#!/usr/bin/env node | |
var d3 = require("./"); | |
var csv = ["foo", "bar", "baz", "foobarbaz", "BLAHBLAH"].join(",") + "\n" + | |
d3.csv.formatRows(d3.range(10000).map(function() { | |
return d3.range(5).map(Math.random); | |
})); | |
benchmark("Slow", function() { parseSlow(csv); }); |
A demonstration of how to calculate the areas of Voronoi regions clipped by geographic features using D3.
[D3’s implementation](Sutherland–Hodgman algorithm) of the Sutherland–Hodgman algorithm only works for convex clip polygons, but we exploit the fact that Voronoi regions are guaranteed to be convex, and use each Voronoi region as a clip polygon, with the projected geographic boundary as a subject polygon.
In response to a question by Gonzalo Bellver.