Skip to content

Instantly share code, notes, and snippets.

@jboner
Last active October 13, 2024 07:51
Show Gist options
  • Save jboner/2841832 to your computer and use it in GitHub Desktop.
Save jboner/2841832 to your computer and use it in GitHub Desktop.
Latency Numbers Every Programmer Should Know
Latency Comparison Numbers (~2012)
----------------------------------
L1 cache reference 0.5 ns
Branch mispredict 5 ns
L2 cache reference 7 ns 14x L1 cache
Mutex lock/unlock 25 ns
Main memory reference 100 ns 20x L2 cache, 200x L1 cache
Compress 1K bytes with Zippy 3,000 ns 3 us
Send 1K bytes over 1 Gbps network 10,000 ns 10 us
Read 4K randomly from SSD* 150,000 ns 150 us ~1GB/sec SSD
Read 1 MB sequentially from memory 250,000 ns 250 us
Round trip within same datacenter 500,000 ns 500 us
Read 1 MB sequentially from SSD* 1,000,000 ns 1,000 us 1 ms ~1GB/sec SSD, 4X memory
Disk seek 10,000,000 ns 10,000 us 10 ms 20x datacenter roundtrip
Read 1 MB sequentially from disk 20,000,000 ns 20,000 us 20 ms 80x memory, 20X SSD
Send packet CA->Netherlands->CA 150,000,000 ns 150,000 us 150 ms
Notes
-----
1 ns = 10^-9 seconds
1 us = 10^-6 seconds = 1,000 ns
1 ms = 10^-3 seconds = 1,000 us = 1,000,000 ns
Credit
------
By Jeff Dean: http://research.google.com/people/jeff/
Originally by Peter Norvig: http://norvig.com/21-days.html#answers
Contributions
-------------
'Humanized' comparison: https://gist.github.com/hellerbarde/2843375
Visual comparison chart: http://i.imgur.com/k0t1e.png
@robertknight
Copy link

As an updated point of reference for the first few numbers, Apple give a table in their Apple Silicon CPU Optimization guide. You can see they are extremely similar to the original figures:

Apple Silicon CPU latency

@hernaneg350
Copy link

hernaneg350 commented Oct 12, 2024

Just a note for whomever wants to use this as a reference: I personally understand this does not take queuing & contention into account.

Numbers should change when physical devices have contention (CPU, Memory buffers, NIO, Thread pools) so things might be slightly larger in the average case (usually you'd try to maximize utilization and tradeoff for some contention) and quite larger on worst case (when that optimization goes wrong or you botched the design with bad bottlenecks).

This is amazing work btw and I'm glad to see how the community has added specs, references and notes on top of it.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment