Last active
September 19, 2022 07:08
-
-
Save jeremyfix/ee183491af00d536006c4531ec3e536b to your computer and use it in GitHub Desktop.
Experimentation of pytorch 1.12 gradient descent with complex tensors
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
name: torchcomplex | |
channels: | |
- pytorch | |
- defaults | |
dependencies: | |
- _libgcc_mutex=0.1=main | |
- _openmp_mutex=5.1=1_gnu | |
- blas=1.0=mkl | |
- brotli=1.0.9=h5eee18b_7 | |
- brotli-bin=1.0.9=h5eee18b_7 | |
- brotlipy=0.7.0=py39h27cfd23_1003 | |
- bzip2=1.0.8=h7b6447c_0 | |
- ca-certificates=2022.07.19=h06a4308_0 | |
- certifi=2022.6.15=py39h06a4308_0 | |
- cffi=1.15.1=py39h74dc2b5_0 | |
- charset-normalizer=2.0.4=pyhd3eb1b0_0 | |
- cpuonly=2.0=0 | |
- cryptography=37.0.1=py39h9ce1e76_0 | |
- cycler=0.11.0=pyhd3eb1b0_0 | |
- dbus=1.13.18=hb2f20db_0 | |
- expat=2.4.4=h295c915_0 | |
- ffmpeg=4.3=hf484d3e_0 | |
- fontconfig=2.13.1=h6c09931_0 | |
- fonttools=4.25.0=pyhd3eb1b0_0 | |
- freetype=2.11.0=h70c0345_0 | |
- giflib=5.2.1=h7b6447c_0 | |
- glib=2.69.1=h4ff587b_1 | |
- gmp=6.2.1=h295c915_3 | |
- gnutls=3.6.15=he1e5248_0 | |
- gst-plugins-base=1.14.0=h8213a91_2 | |
- gstreamer=1.14.0=h28cd5cc_2 | |
- icu=58.2=he6710b0_3 | |
- idna=3.3=pyhd3eb1b0_0 | |
- intel-openmp=2021.4.0=h06a4308_3561 | |
- jpeg=9e=h7f8727e_0 | |
- kiwisolver=1.4.2=py39h295c915_0 | |
- krb5=1.19.2=hac12032_0 | |
- lame=3.100=h7b6447c_0 | |
- lcms2=2.12=h3be6417_0 | |
- ld_impl_linux-64=2.38=h1181459_1 | |
- lerc=3.0=h295c915_0 | |
- libbrotlicommon=1.0.9=h5eee18b_7 | |
- libbrotlidec=1.0.9=h5eee18b_7 | |
- libbrotlienc=1.0.9=h5eee18b_7 | |
- libclang=10.0.1=default_hb85057a_2 | |
- libdeflate=1.8=h7f8727e_5 | |
- libedit=3.1.20210910=h7f8727e_0 | |
- libevent=2.1.12=h8f2d780_0 | |
- libffi=3.3=he6710b0_2 | |
- libgcc-ng=11.2.0=h1234567_1 | |
- libgomp=11.2.0=h1234567_1 | |
- libiconv=1.16=h7f8727e_2 | |
- libidn2=2.3.2=h7f8727e_0 | |
- libllvm10=10.0.1=hbcb73fb_5 | |
- libpng=1.6.37=hbc83047_0 | |
- libpq=12.9=h16c4e8d_3 | |
- libstdcxx-ng=11.2.0=h1234567_1 | |
- libtasn1=4.16.0=h27cfd23_0 | |
- libtiff=4.4.0=hecacb30_0 | |
- libunistring=0.9.10=h27cfd23_0 | |
- libuuid=1.0.3=h7f8727e_2 | |
- libwebp=1.2.2=h55f646e_0 | |
- libwebp-base=1.2.2=h7f8727e_0 | |
- libxcb=1.15=h7f8727e_0 | |
- libxkbcommon=1.0.1=hfa300c1_0 | |
- libxml2=2.9.14=h74e7548_0 | |
- libxslt=1.1.35=h4e12654_0 | |
- lz4-c=1.9.3=h295c915_1 | |
- matplotlib=3.5.2=py39h06a4308_0 | |
- matplotlib-base=3.5.2=py39hf590b9c_0 | |
- mkl=2021.4.0=h06a4308_640 | |
- mkl-service=2.4.0=py39h7f8727e_0 | |
- mkl_fft=1.3.1=py39hd3c417c_0 | |
- mkl_random=1.2.2=py39h51133e4_0 | |
- munkres=1.1.4=py_0 | |
- ncurses=6.3=h5eee18b_3 | |
- nettle=3.7.3=hbbd107a_1 | |
- nspr=4.33=h295c915_0 | |
- nss=3.74=h0370c37_0 | |
- numpy=1.23.1=py39h6c91a56_0 | |
- numpy-base=1.23.1=py39ha15fc14_0 | |
- openh264=2.1.1=h4ff587b_0 | |
- openssl=1.1.1q=h7f8727e_0 | |
- packaging=21.3=pyhd3eb1b0_0 | |
- pcre=8.45=h295c915_0 | |
- pillow=9.2.0=py39hace64e9_1 | |
- pip=22.1.2=py39h06a4308_0 | |
- ply=3.11=py39h06a4308_0 | |
- pycparser=2.21=pyhd3eb1b0_0 | |
- pyopenssl=22.0.0=pyhd3eb1b0_0 | |
- pyparsing=3.0.9=py39h06a4308_0 | |
- pyqt=5.15.7=py39h6a678d5_1 | |
- pyqt5-sip=12.11.0=py39h6a678d5_1 | |
- pysocks=1.7.1=py39h06a4308_0 | |
- python=3.9.13=haa1d7c7_1 | |
- python-dateutil=2.8.2=pyhd3eb1b0_0 | |
- pytorch=1.12.1=py3.9_cpu_0 | |
- pytorch-mutex=1.0=cpu | |
- qt-main=5.15.2=h327a75a_7 | |
- qt-webengine=5.15.9=hd2b0992_4 | |
- qtwebkit=5.212=h4eab89a_4 | |
- readline=8.1.2=h7f8727e_1 | |
- requests=2.28.1=py39h06a4308_0 | |
- setuptools=63.4.1=py39h06a4308_0 | |
- sip=6.6.2=py39h6a678d5_0 | |
- six=1.16.0=pyhd3eb1b0_1 | |
- sqlite=3.39.2=h5082296_0 | |
- tk=8.6.12=h1ccaba5_0 | |
- toml=0.10.2=pyhd3eb1b0_0 | |
- torchvision=0.13.1=py39_cpu | |
- tornado=6.2=py39h5eee18b_0 | |
- tqdm=4.64.0=py39h06a4308_0 | |
- typing_extensions=4.3.0=py39h06a4308_0 | |
- tzdata=2022c=h04d1e81_0 | |
- urllib3=1.26.11=py39h06a4308_0 | |
- wheel=0.37.1=pyhd3eb1b0_0 | |
- xz=5.2.5=h7f8727e_1 | |
- zlib=1.2.12=h5eee18b_3 | |
- zstd=1.5.2=ha4553b6_0 | |
prefix: /home/fix_jer/.local/conda/envs/torchcomplex |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
""" | |
Script for demoing complex data in pytorch | |
""" | |
import sys | |
import argparse | |
import itertools | |
import torch | |
import torch.utils.data | |
import torch.nn as nn | |
import tqdm | |
import numpy as np | |
import matplotlib.pyplot as plt | |
class Dataset(torch.utils.data.IterableDataset): | |
def __init__(self): | |
super().__init__() | |
def __next__(self): | |
x = (2 * torch.rand(1) - 1.0) + (2 * torch.rand(1) - 1) * 1j | |
y = x.abs() | |
return x, y | |
def __iter__(self): | |
return self | |
class CReLU(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.relu = nn.ReLU() | |
def forward(self, z): | |
return self.relu(z.real) + self.relu(z.imag) * 1j | |
class zReLU(nn.Module): | |
def forward(self, z): | |
pos_real = z.real > 0 | |
pos_img = z.imag > 0 | |
return z * pos_real * pos_img | |
class Mod(nn.Module): | |
def __init__(self): | |
super().__init__() | |
def forward(self, z): | |
return torch.abs(z) | |
class Dropout(nn.Module): | |
def __init__(self, p=0.5): | |
super().__init__() | |
self.p = p | |
def forward(self, z): | |
mask = torch.nn.functional.dropout( | |
torch.ones(z.shape), self.p, training=self.training | |
) | |
return mask * z | |
class Dropout2d(nn.Module): | |
def __init__(self, p=0.5): | |
super().__init__() | |
self.p = p | |
def forward(self, z): | |
mask = torch.nn.functional.dropout2d( | |
torch.ones(z.shape), self.p, training=self.training | |
) | |
return mask * z | |
def test_data(): | |
dataloader = torch.utils.data.DataLoader(Dataset(), batch_size=32, num_workers=2) | |
X, Y = next(iter(dataloader)) | |
print(f"Got an input tensor of shape {X.shape} and type {X.dtype}") | |
def test_linear(args): | |
dataset = Dataset() | |
dataloader = torch.utils.data.DataLoader(dataset, batch_size=32, num_workers=2) | |
dtype = torch.complex64 | |
device = torch.device(args.device) | |
model = nn.Sequential( | |
nn.Linear(1, 128, dtype=dtype), | |
Dropout(0.5), | |
zReLU(), | |
# nn.BatchNorm1d(32, dtype=dtype), | |
# nn.Dropout(), | |
nn.Linear(128, 128, dtype=dtype), | |
Dropout(0.5), | |
zReLU(), | |
nn.Linear(128, 1, dtype=dtype), | |
Mod(), | |
) | |
optim = torch.optim.Adam(model.parameters(), lr=3e-4) | |
# Train the network | |
it_train = iter(dataloader) | |
n_steps = 5000 | |
model.train() | |
for i in tqdm.tqdm(range(n_steps)): | |
x, y = next(it_train) | |
x, y = x.to(device), y.to(device) | |
# Forward | |
y_pred = model(x) | |
loss = ((y_pred - y) ** 2).sum() | |
sys.stdout.write(f"\r {loss}") | |
sys.stdout.flush() | |
optim.zero_grad() | |
loss.backward() | |
optim.step() | |
# Evaluate | |
model.eval() | |
test_loss = 0 | |
n_samples = 1000 | |
with torch.no_grad(): | |
for (x, y) in itertools.islice(dataset, n_samples): | |
x, y = x.to(device), y.to(device) | |
# Forward | |
y_pred = model(x) | |
test_loss += ((y_pred - y) ** 2).sum().item() | |
test_loss /= n_samples | |
test_loss = np.sqrt(test_loss) | |
print(f"The loss evaluated on {n_samples} samples is {test_loss}") | |
# Display the learned function | |
x = np.linspace(-1, 1) | |
y = np.linspace(-1, 1) | |
X, Y = np.meshgrid(x, y) | |
inputs = torch.tensor(X * 1j + Y, dtype=dtype).reshape(-1, 1) | |
expected = inputs.abs() | |
model.eval() | |
with torch.no_grad(): | |
outputs = model(inputs) | |
print(((outputs - expected) ** 2).mean()) | |
Z = outputs.reshape(X.shape).numpy() | |
plt.figure() | |
plt.pcolormesh(X, Y, Z) | |
plt.colorbar() | |
plt.tight_layout() | |
plt.savefig("abs.png") | |
plt.show() | |
def test_conv(args): | |
# Dummy example where conv are actually doing the same operations as fc layers | |
dataset = Dataset() | |
dataloader = torch.utils.data.DataLoader(dataset, batch_size=32, num_workers=2) | |
dtype = torch.complex64 | |
device = torch.device(args.device) | |
model = nn.Sequential( | |
nn.Conv1d(1, 128, kernel_size=1, dtype=dtype), | |
zReLU(), | |
# nn.BatchNorm1d(32, dtype=dtype), | |
Dropout2d(), | |
nn.Conv1d(128, 128, kernel_size=1, dtype=dtype), | |
zReLU(), | |
Dropout2d(), | |
nn.Flatten(), | |
nn.Linear(128, 1, dtype=dtype), | |
Mod(), | |
) | |
optim = torch.optim.Adam(model.parameters(), lr=3e-4) | |
# Train the network | |
it_train = iter(dataloader) | |
n_steps = 1000 | |
model.train() | |
for i in tqdm.tqdm(range(n_steps)): | |
x, y = next(it_train) | |
x, y = x.to(device), y.to(device) | |
# Forward | |
x = x.reshape(-1, 1, 1) | |
y_pred = model(x) | |
loss = ((y_pred - y) ** 2).sum() | |
sys.stdout.write(f"\r {loss}") | |
sys.stdout.flush() | |
optim.zero_grad() | |
loss.backward() | |
optim.step() | |
# Evaluate | |
model.eval() | |
test_loss = 0 | |
n_samples = 1000 | |
with torch.no_grad(): | |
for (x, y) in itertools.islice(dataset, n_samples): | |
x, y = x.to(device), y.to(device) | |
x = x.reshape(-1, 1, 1) | |
# Forward | |
y_pred = model(x) | |
test_loss += ((y_pred - y) ** 2).sum().item() | |
test_loss /= n_samples | |
test_loss = np.sqrt(test_loss) | |
print(f"The loss evaluated on {n_samples} samples is {test_loss}") | |
# Display the learned function | |
x = np.linspace(-1, 1) | |
y = np.linspace(-1, 1) | |
X, Y = np.meshgrid(x, y) | |
inputs = torch.tensor(X * 1j + Y, dtype=dtype).reshape(-1, 1, 1) | |
expected = inputs.abs() | |
model.eval() | |
with torch.no_grad(): | |
outputs = model(inputs) | |
print(((outputs - expected) ** 2).mean()) | |
Z = outputs.reshape(X.shape).numpy() | |
plt.figure() | |
plt.pcolormesh(X, Y, Z) | |
plt.colorbar() | |
plt.show() | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--device", choices=["cpu", "cuda"], default="cpu") | |
args = parser.parse_args() | |
test_data() | |
test_linear(args) | |
test_conv(args) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Example output with the dense layers