-
-
Save jeremyjordan/5a222e04bb78c242f5763ad40626c452 to your computer and use it in GitHub Desktop.
from keras.callbacks import Callback | |
import keras.backend as K | |
import numpy as np | |
class SGDRScheduler(Callback): | |
'''Cosine annealing learning rate scheduler with periodic restarts. | |
# Usage | |
```python | |
schedule = SGDRScheduler(min_lr=1e-5, | |
max_lr=1e-2, | |
steps_per_epoch=np.ceil(epoch_size/batch_size), | |
lr_decay=0.9, | |
cycle_length=5, | |
mult_factor=1.5) | |
model.fit(X_train, Y_train, epochs=100, callbacks=[schedule]) | |
``` | |
# Arguments | |
min_lr: The lower bound of the learning rate range for the experiment. | |
max_lr: The upper bound of the learning rate range for the experiment. | |
steps_per_epoch: Number of mini-batches in the dataset. Calculated as `np.ceil(epoch_size/batch_size)`. | |
lr_decay: Reduce the max_lr after the completion of each cycle. | |
Ex. To reduce the max_lr by 20% after each cycle, set this value to 0.8. | |
cycle_length: Initial number of epochs in a cycle. | |
mult_factor: Scale epochs_to_restart after each full cycle completion. | |
# References | |
Blog post: jeremyjordan.me/nn-learning-rate | |
Original paper: http://arxiv.org/abs/1608.03983 | |
''' | |
def __init__(self, | |
min_lr, | |
max_lr, | |
steps_per_epoch, | |
lr_decay=1, | |
cycle_length=10, | |
mult_factor=2): | |
self.min_lr = min_lr | |
self.max_lr = max_lr | |
self.lr_decay = lr_decay | |
self.batch_since_restart = 0 | |
self.next_restart = cycle_length | |
self.steps_per_epoch = steps_per_epoch | |
self.cycle_length = cycle_length | |
self.mult_factor = mult_factor | |
self.history = {} | |
def clr(self): | |
'''Calculate the learning rate.''' | |
fraction_to_restart = self.batch_since_restart / (self.steps_per_epoch * self.cycle_length) | |
lr = self.min_lr + 0.5 * (self.max_lr - self.min_lr) * (1 + np.cos(fraction_to_restart * np.pi)) | |
return lr | |
def on_train_begin(self, logs={}): | |
'''Initialize the learning rate to the minimum value at the start of training.''' | |
logs = logs or {} | |
K.set_value(self.model.optimizer.lr, self.max_lr) | |
def on_batch_end(self, batch, logs={}): | |
'''Record previous batch statistics and update the learning rate.''' | |
logs = logs or {} | |
self.history.setdefault('lr', []).append(K.get_value(self.model.optimizer.lr)) | |
for k, v in logs.items(): | |
self.history.setdefault(k, []).append(v) | |
self.batch_since_restart += 1 | |
K.set_value(self.model.optimizer.lr, self.clr()) | |
def on_epoch_end(self, epoch, logs={}): | |
'''Check for end of current cycle, apply restarts when necessary.''' | |
if epoch + 1 == self.next_restart: | |
self.batch_since_restart = 0 | |
self.cycle_length = np.ceil(self.cycle_length * self.mult_factor) | |
self.next_restart += self.cycle_length | |
self.max_lr *= self.lr_decay | |
self.best_weights = self.model.get_weights() | |
def on_train_end(self, logs={}): | |
'''Set weights to the values from the end of the most recent cycle for best performance.''' | |
self.model.set_weights(self.best_weights) |
The model uses the learning rate, which is mentioned in the callback. So SGDRscheduler replaces the learning rate of Adam's.
Dear Jeremy, can I ask what's the license of this code? Can I use it for commercial use?
nice code thank you 👍
Hi. I tried to add SGDR into my model but I get an error saying " AttributeError: 'SGDRScheduler' object has no attribute 'on_train_batch_begin' ".
sgdr = SGDRScheduler(min_lr=1e-5, max_lr = 1e-2,
steps_per_epoch = np.ceil(X_train_len/batch_size),
lr_decay = 0.9,
cycle_length=10,
mult_factor = 2)
resnet_model.compile(loss = 'binary_crossentropy', optimizer = optim, metrics = ['accuracy'])
resnet_history = resnet_model.fit(X, y,
batch_size = batch_size,
epochs = epochs,
verbose = 1, callbacks = [sgdr] , validation_split = 0.2)
Also I am using resnet50 from keras. ReduceLROnPlateau works well.
Thanks for the code.
I made a few changes for it to be used with optimizers that have decoupled weight decay, such as AdamW and SGDW, to obtain optimizers like AdamWR and SGDWR in TensorFlow/Keras.
See https://gist.github.com/chaohuang/e1c624027e16a0428489163ceb7b1f06
Hey! I'm getting the following error when trying to use this callback:
AttributeError: 'SGDRScheduler' object has no attribute 'on_train_batch_begin'
The error is being raised by .../tensorflow/python/keras/callbacks.py
.
My Tensorflow and Keras versions are:
print(tf.__version__)
>> 1.14.0
print(keras.__version__)
>>2.2.4-tf
Seems like keras is expecting a method thats not there...any clue as to why this would be happening?
Hey! I'm getting the following error when trying to use this callback:
AttributeError: 'SGDRScheduler' object has no attribute 'on_train_batch_begin'
The error is being raised by
.../tensorflow/python/keras/callbacks.py
.My Tensorflow and Keras versions are:
print(tf.__version__) >> 1.14.0print(keras.__version__) >>2.2.4-tfSeems like keras is expecting a method thats not there...any clue as to why this would be happening?
After some googling, I found that the issue lies within where you import keras from.
I've been importing keras from tensorflow with:
from tensorflow import keras
However, new tensorflow port of keras has a different callback class structure and hence the issue.
To fix this, I just changed that import line to:
import keras
Pretty simple and seems to do the trick!
;D
@Rendiere this is great to know, thanks for sharing!
an error occurs: AttributeError: 'SGDRScheduler' object has no attribute 'best_weights', my code as follow:
clr = SGDRScheduler(min_lr=1e-5,max_lr=1e-2,
steps_per_epoch=np.ceil(epoch_size/batch_size),
lr_decay=0.9,
cycle_length=5,
mult_factor=1.5)
red_val_y, pred_test_y, best_score = train_pred(model, X_train, y_train, X_val, y_val, epochs = 8, callback = [clr,])I too got the same error, then I realized that the attribute 'best_weights' is added only when the number of epochs is greater than 10.
Hi @VIGNESWARANC, I am also running into this issue. Where in the codebase id best_weights added only when the number of epochs is >10, is there a reason for this, and it can it be turned off?
@Trotts it is dependent on your cycle length.
@jeremyjordan Thanks for the help. If I was training model heads first, and then finetuning all layers after, what would be the cycle length to use?
For example, if I have the following code:
schedule = SGDRScheduler(min_lr=1e-5,
max_lr=1e-2,
steps_per_epoch=np.ceil(100/config.BATCH_SIZE),
lr_decay=0.9,
cycle_length=2,
mult_factor=1.5)
model.train(dataset_train, dataset_val,
learning_rate=1e-2,
epochs=2,
layers='heads',best_only=True, custom_callbacks = [schedule, csv_logger], augmentation=c[5])
schedule = SGDRScheduler(min_lr=1e-5/10,
max_lr=1e-2/10,
steps_per_epoch=np.ceil(100/config.BATCH_SIZE),
lr_decay=0.9,
cycle_length=1,
mult_factor=1.5)
model.train(dataset_train, dataset_val,
learning_rate=1e-2/10,
epochs=3,
layers='all',best_only=True, custom_callbacks = [schedule, csv_logger], augmentation=c[5])
Where the first scheduler sets up training for the head layers for 2 epochs, then the second scheduler sets up training all layers for 1 epoch, I still run into the best_weights error and am unsure why?
Output:
Selecting layers to train
fpn_c5p5 (Conv2D)
fpn_c4p4 (Conv2D)
fpn_c3p3 (Conv2D)
fpn_c2p2 (Conv2D)
fpn_p5 (Conv2D)
fpn_p2 (Conv2D)
fpn_p3 (Conv2D)
fpn_p4 (Conv2D)
In model: rpn_model
rpn_conv_shared (Conv2D)
rpn_class_raw (Conv2D)
rpn_bbox_pred (Conv2D)
mrcnn_mask_conv1 (TimeDistributed)
mrcnn_mask_bn1 (TimeDistributed)
mrcnn_mask_conv2 (TimeDistributed)
mrcnn_mask_bn2 (TimeDistributed)
mrcnn_class_conv1 (TimeDistributed)
mrcnn_class_bn1 (TimeDistributed)
mrcnn_mask_conv3 (TimeDistributed)
mrcnn_mask_bn3 (TimeDistributed)
mrcnn_class_conv2 (TimeDistributed)
mrcnn_class_bn2 (TimeDistributed)
mrcnn_mask_conv4 (TimeDistributed)
mrcnn_mask_bn4 (TimeDistributed)
mrcnn_bbox_fc (TimeDistributed)
mrcnn_mask_deconv (TimeDistributed)
mrcnn_class_logits (TimeDistributed)
mrcnn_mask (TimeDistributed)
Epoch 1/2
100/100 [==============================] - 503s 5s/step - loss: 1.1976 - rpn_class_loss: 0.0139 - rpn_bbox_loss: 0.4676 - mrcnn_class_loss: 0.0649 - mrcnn_bbox_loss: 0.4371 - mrcnn_mask_loss: 0.2139 - val_loss: 0.9937 - val_rpn_class_loss: 0.0084 - val_rpn_bbox_loss: 0.4431 - val_mrcnn_class_loss: 0.0509 - val_mrcnn_bbox_loss: 0.3357 - val_mrcnn_mask_loss: 0.1553
Epoch 2/2
100/100 [==============================] - 355s 4s/step - loss: 0.7547 - rpn_class_loss: 0.0053 - rpn_bbox_loss: 0.3258 - mrcnn_class_loss: 0.0556 - mrcnn_bbox_loss: 0.2167 - mrcnn_mask_loss: 0.1511 - val_loss: 0.8487 - val_rpn_class_loss: 0.0063 - val_rpn_bbox_loss: 0.4210 - val_mrcnn_class_loss: 0.0482 - val_mrcnn_bbox_loss: 0.2187 - val_mrcnn_mask_loss: 0.1544
Saving best model only...
Starting at epoch 2. LR=0.001
Checkpoint Path: XXX
Selecting layers to train
conv1 (Conv2D)
bn_conv1 (BatchNorm)
res2a_branch2a (Conv2D)
bn2a_branch2a (BatchNorm)
res2a_branch2b (Conv2D)
bn2a_branch2b (BatchNorm)
res2a_branch2c (Conv2D)
res2a_branch1 (Conv2D)
bn2a_branch2c (BatchNorm)
bn2a_branch1 (BatchNorm)
res2b_branch2a (Conv2D)
bn2b_branch2a (BatchNorm)
res2b_branch2b (Conv2D)
bn2b_branch2b (BatchNorm)
res2b_branch2c (Conv2D)
bn2b_branch2c (BatchNorm)
res2c_branch2a (Conv2D)
bn2c_branch2a (BatchNorm)
res2c_branch2b (Conv2D)
bn2c_branch2b (BatchNorm)
res2c_branch2c (Conv2D)
bn2c_branch2c (BatchNorm)
res3a_branch2a (Conv2D)
bn3a_branch2a (BatchNorm)
res3a_branch2b (Conv2D)
bn3a_branch2b (BatchNorm)
res3a_branch2c (Conv2D)
res3a_branch1 (Conv2D)
bn3a_branch2c (BatchNorm)
bn3a_branch1 (BatchNorm)
res3b_branch2a (Conv2D)
bn3b_branch2a (BatchNorm)
res3b_branch2b (Conv2D)
bn3b_branch2b (BatchNorm)
res3b_branch2c (Conv2D)
bn3b_branch2c (BatchNorm)
res3c_branch2a (Conv2D)
bn3c_branch2a (BatchNorm)
res3c_branch2b (Conv2D)
bn3c_branch2b (BatchNorm)
res3c_branch2c (Conv2D)
bn3c_branch2c (BatchNorm)
res3d_branch2a (Conv2D)
bn3d_branch2a (BatchNorm)
res3d_branch2b (Conv2D)
bn3d_branch2b (BatchNorm)
res3d_branch2c (Conv2D)
bn3d_branch2c (BatchNorm)
res4a_branch2a (Conv2D)
bn4a_branch2a (BatchNorm)
res4a_branch2b (Conv2D)
bn4a_branch2b (BatchNorm)
res4a_branch2c (Conv2D)
res4a_branch1 (Conv2D)
bn4a_branch2c (BatchNorm)
bn4a_branch1 (BatchNorm)
res4b_branch2a (Conv2D)
bn4b_branch2a (BatchNorm)
res4b_branch2b (Conv2D)
bn4b_branch2b (BatchNorm)
res4b_branch2c (Conv2D)
bn4b_branch2c (BatchNorm)
res4c_branch2a (Conv2D)
bn4c_branch2a (BatchNorm)
res4c_branch2b (Conv2D)
bn4c_branch2b (BatchNorm)
res4c_branch2c (Conv2D)
bn4c_branch2c (BatchNorm)
res4d_branch2a (Conv2D)
bn4d_branch2a (BatchNorm)
res4d_branch2b (Conv2D)
bn4d_branch2b (BatchNorm)
res4d_branch2c (Conv2D)
bn4d_branch2c (BatchNorm)
res4e_branch2a (Conv2D)
bn4e_branch2a (BatchNorm)
res4e_branch2b (Conv2D)
bn4e_branch2b (BatchNorm)
res4e_branch2c (Conv2D)
bn4e_branch2c (BatchNorm)
res4f_branch2a (Conv2D)
bn4f_branch2a (BatchNorm)
res4f_branch2b (Conv2D)
bn4f_branch2b (BatchNorm)
res4f_branch2c (Conv2D)
bn4f_branch2c (BatchNorm)
res5a_branch2a (Conv2D)
bn5a_branch2a (BatchNorm)
res5a_branch2b (Conv2D)
bn5a_branch2b (BatchNorm)
res5a_branch2c (Conv2D)
res5a_branch1 (Conv2D)
bn5a_branch2c (BatchNorm)
bn5a_branch1 (BatchNorm)
res5b_branch2a (Conv2D)
bn5b_branch2a (BatchNorm)
res5b_branch2b (Conv2D)
bn5b_branch2b (BatchNorm)
res5b_branch2c (Conv2D)
bn5b_branch2c (BatchNorm)
res5c_branch2a (Conv2D)
bn5c_branch2a (BatchNorm)
res5c_branch2b (Conv2D)
bn5c_branch2b (BatchNorm)
res5c_branch2c (Conv2D)
bn5c_branch2c (BatchNorm)
fpn_c5p5 (Conv2D)
fpn_c4p4 (Conv2D)
fpn_c3p3 (Conv2D)
fpn_c2p2 (Conv2D)
fpn_p5 (Conv2D)
fpn_p2 (Conv2D)
fpn_p3 (Conv2D)
fpn_p4 (Conv2D)
In model: rpn_model
rpn_conv_shared (Conv2D)
rpn_class_raw (Conv2D)
rpn_bbox_pred (Conv2D)
mrcnn_mask_conv1 (TimeDistributed)
mrcnn_mask_bn1 (TimeDistributed)
mrcnn_mask_conv2 (TimeDistributed)
mrcnn_mask_bn2 (TimeDistributed)
mrcnn_class_conv1 (TimeDistributed)
mrcnn_class_bn1 (TimeDistributed)
mrcnn_mask_conv3 (TimeDistributed)
mrcnn_mask_bn3 (TimeDistributed)
mrcnn_class_conv2 (TimeDistributed)
mrcnn_class_bn2 (TimeDistributed)
mrcnn_mask_conv4 (TimeDistributed)
mrcnn_mask_bn4 (TimeDistributed)
mrcnn_bbox_fc (TimeDistributed)
mrcnn_mask_deconv (TimeDistributed)
mrcnn_class_logits (TimeDistributed)
mrcnn_mask (TimeDistributed)
Epoch 3/3
100/100 [==============================] - 567s 6s/step - loss: 0.5076 - rpn_class_loss: 0.0035 - rpn_bbox_loss: 0.1999 - mrcnn_class_loss: 0.0333 - mrcnn_bbox_loss: 0.1361 - mrcnn_mask_loss: 0.1341 - val_loss: 0.7756 - val_rpn_class_loss: 0.0063 - val_rpn_bbox_loss: 0.4040 - val_mrcnn_class_loss: 0.0305 - val_mrcnn_bbox_loss: 0.1886 - val_mrcnn_mask_loss: 0.1455
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-5-462313418ed9> in <module>
157 learning_rate=1e-2/10,
158 epochs=3,
--> 159 layers='all',best_only=True, custom_callbacks = [schedule, csv_logger], augmentation=c[5])
160
161 # Define the InferenceConfig
~/dolphin-recognition/Mask_RCNN-master/mrcnn/model.py in train(self, train_dataset, val_dataset, learning_rate, epochs, layers, augmentation, custom_callbacks, no_augmentation_sources, best_only)
2387 max_queue_size=100,
2388 workers=workers,
-> 2389 use_multiprocessing=True,
2390 )
2391
~/.virtualenvs/dolphin-detection/lib/python3.6/site-packages/keras/legacy/interfaces.py in wrapper(*args, **kwargs)
89 warnings.warn('Update your `' + object_name +
90 '` call to the Keras 2 API: ' + signature, stacklevel=2)
---> 91 return func(*args, **kwargs)
92 wrapper._original_function = func
93 return wrapper
~/.virtualenvs/dolphin-detection/lib/python3.6/site-packages/keras/engine/training.py in fit_generator(self, generator, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, class_weight, max_queue_size, workers, use_multiprocessing, shuffle, initial_epoch)
2224 val_enqueuer.stop()
2225
-> 2226 callbacks.on_train_end()
2227 return self.history
2228
~/.virtualenvs/dolphin-detection/lib/python3.6/site-packages/keras/callbacks.py in on_train_end(self, logs)
137 logs = logs or {}
138 for callback in self.callbacks:
--> 139 callback.on_train_end(logs)
140
141 def __iter__(self):
<ipython-input-4-a9934d14c2aa> in on_train_end(self, logs)
79 def on_train_end(self, logs={}):
80 '''Set weights to the values from the end of the most recent cycle for best performance.'''
---> 81 self.model.set_weights(self.best_weights)
AttributeError: 'SGDRScheduler' object has no attribute 'best_weights'
I would recommend adding logging to the callbacks to diagnose your problem.
def on_epoch_end(self, epoch, logs={}):
'''Check for end of current cycle, apply restarts when necessary.'''
logger.debug('epoch end, checking to see if end of cycle...')
if epoch + 1 == self.next_restart:
logger.debug('cycle finished, saving weights...')
self.batch_since_restart = 0
self.cycle_length = np.ceil(self.cycle_length * self.mult_factor)
self.next_restart += self.cycle_length
self.max_lr *= self.lr_decay
self.best_weights = self.model.get_weights()
def on_train_end(self, logs={}):
'''Set weights to the values from the end of the most recent cycle for best performance.'''
logger.debug('finished training, reloading weights from end of last cycle...')
self.model.set_weights(self.best_weights)
Let me know if you're able to figure it out!
Hi @jeremyjordan,
Thanks for the nice work! What is the license under which you publish this code ?
See here for an "official" implementation without license issues: https://www.tensorflow.org/api_docs/python/tf/keras/experimental/CosineDecayRestarts
@jeremyjordan Sorry for coming back to this after so long, but I recently noticed something with the code I am wondering you could explain?
Lets say I have a model that I have trained to 89 epochs previously. I then restart training at a later date and wish to train for another 11 epoch, up to 100. In this case, it seems as though you will never hit a cycle restart unless you specify a cycle length > 89, due to this line:
if epoch + 1 == self.next_restart:
However, with such a high cycle length, you may never again hit another restart.
For example:
number_epochs = 100
if not os.path.exists(model.log_dir):
os.makedirs(model.log_dir)
csv_logger = CSVLogger(os.path.join(model.log_dir, "epoch_logger.csv"), append=True)
# Save the model config to the log directory
print(config_list, file=open(os.path.join(model.log_dir,"config.txt"), 'w'))
# Train the head branches
# Passing layers="heads" freezes all layers except the head
# layers. You can also pass a regular expression to select
# which layers to train by name pattern.
# Cycle length is what you want + epoch restart num
# (e.g if you want a cycle length of 2, restart epoch is 89, thus cycle length = 91)
schedule = SGDRScheduler(min_lr=1e-5,
max_lr=1e-2,
steps_per_epoch=np.ceil(number_epochs/config.BATCH_SIZE),
lr_decay=0.9,
cycle_length=91,
mult_factor=1.5)
model.train(dataset_train, dataset_val,
learning_rate=1e-2,
epochs=number_epochs,
layers='heads',best_only=True, custom_callbacks = [schedule, csv_logger], augmentation= aug1)
Gives:
Starting at epoch 89. LR=0.01
Checkpoint Path: /home/b3020111/dolphin-recognition/Mask_RCNN-master/logs/ndd/above/od/ndd-above-od-1.10-tester20200324T1218/mask_rcnn_ndd-above-od-1.10-tester_{epoch:04d}.h5
Selecting layers to train
fpn_c5p5 (Conv2D)
fpn_c4p4 (Conv2D)
fpn_c3p3 (Conv2D)
fpn_c2p2 (Conv2D)
fpn_p5 (Conv2D)
fpn_p2 (Conv2D)
fpn_p3 (Conv2D)
fpn_p4 (Conv2D)
In model: rpn_model
rpn_conv_shared (Conv2D)
rpn_class_raw (Conv2D)
rpn_bbox_pred (Conv2D)
mrcnn_mask_conv1 (TimeDistributed)
mrcnn_mask_bn1 (TimeDistributed)
mrcnn_mask_conv2 (TimeDistributed)
mrcnn_mask_bn2 (TimeDistributed)
mrcnn_class_conv1 (TimeDistributed)
mrcnn_class_bn1 (TimeDistributed)
mrcnn_mask_conv3 (TimeDistributed)
mrcnn_mask_bn3 (TimeDistributed)
mrcnn_class_conv2 (TimeDistributed)
mrcnn_class_bn2 (TimeDistributed)
mrcnn_mask_conv4 (TimeDistributed)
mrcnn_mask_bn4 (TimeDistributed)
mrcnn_bbox_fc (TimeDistributed)
mrcnn_mask_deconv (TimeDistributed)
mrcnn_class_logits (TimeDistributed)
mrcnn_mask (TimeDistributed)
Epoch 90/100
99/100 [============================>.] - ETA: 3s - loss: 0.9831 - rpn_class_loss: 0.0082 - rpn_bbox_loss: 0.6570 - mrcnn_class_loss: 0.0171 - mrcnn_bbox_loss: 0.1787 - mrcnn_mask_loss: 0.1214
epoch end, checking to see if end of cycle...
epoch + 1 = 90 self.next_restart = 91
100/100 [==============================] - 378s 4s/step - loss: 0.9816 - rpn_class_loss: 0.0083 - rpn_bbox_loss: 0.6560 - mrcnn_class_loss: 0.0171 - mrcnn_bbox_loss: 0.1783 - mrcnn_mask_loss: 0.1213 - val_loss: 1.7121 - val_rpn_class_loss: 0.0104 - val_rpn_bbox_loss: 1.4068 - val_mrcnn_class_loss: 0.0109 - val_mrcnn_bbox_loss: 0.1635 - val_mrcnn_mask_loss: 0.1200
Epoch 91/100
99/100 [============================>.] - ETA: 2s - loss: 1.0819 - rpn_class_loss: 0.0092 - rpn_bbox_loss: 0.7405 - mrcnn_class_loss: 0.0164 - mrcnn_bbox_loss: 0.1952 - mrcnn_mask_loss: 0.1199
epoch end, checking to see if end of cycle...
epoch + 1 = 91 self.next_restart = 91
cycle finished, saving weights...
Next restart at 228.0
100/100 [==============================] - 300s 3s/step - loss: 1.0881 - rpn_class_loss: 0.0092 - rpn_bbox_loss: 0.7459 - mrcnn_class_loss: 0.0164 - mrcnn_bbox_loss: 0.1957 - mrcnn_mask_loss: 0.1202 - val_loss: 1.2089 - val_rpn_class_loss: 0.0113 - val_rpn_bbox_loss: 0.8753 - val_mrcnn_class_loss: 0.0101 - val_mrcnn_bbox_loss: 0.1912 - val_mrcnn_mask_loss: 0.1204
Epoch 92/100
99/100 [============================>.] - ETA: 2s - loss: 1.0154 - rpn_class_loss: 0.0100 - rpn_bbox_loss: 0.6705 - mrcnn_class_loss: 0.0160 - mrcnn_bbox_loss: 0.1912 - mrcnn_mask_loss: 0.1269
epoch end, checking to see if end of cycle...
epoch + 1 = 92 self.next_restart = 228.0
If the cycle length is changed from 91 to say, 2, then the epoch + 1 check is never fulfilled, and thus a best_weights is never stored causing the code to error at the end of the training.
Am I correct in this interpretation of how the cycle length is working in this code, and if so, is there a way to allow for smaller cycle lengths while still allowing for the restarting of training?
does it matter what you specify for learning rate for whatever KEras optimizer you are using...
Like if I had Adam(lr =1e-2) but the SGDRcheduler had a min/max of 1e-6, 1e-3, it would still work right? Just as
reduce learning rate or other such native callbacks?