Deep Matching Prior Network: Toward Tighter Multi-Oriented Text Detection
Detecting Oriented Text in Natural Images by Linking Segments
Unambiguous Text Localization and Retrieval for Cluttered Scenes
from __future__ import print_function
import numpy as np
from spark_config import sc
from pyspark.mllib.linalg import Vectors
from pyspark.mllib.regression import LabeledPoint
from util import RDD_check, LabeledPoint_check
from sklearn.base import BaseEstimator
def perceptron_loss(y, y_pred):
import gzip | |
import os | |
import numpy as np | |
import six | |
from six.moves.urllib import request | |
parent = 'http://yann.lecun.com/exdb/mnist' | |
train_images = 'train-images-idx3-ubyte.gz' | |
train_labels = 'train-labels-idx1-ubyte.gz' |
import os | |
import numpy as np | |
from matplotlib import pyplot as plt | |
from time import time | |
from foxhound import activations | |
from foxhound import updates | |
from foxhound import inits | |
from foxhound.theano_utils import floatX, sharedX |
from scipy.spatial.distance import pdist, squareform | |
import numpy as np | |
from numbapro import jit, float32 | |
def distcorr(X, Y): | |
""" Compute the distance correlation function | |
>>> a = [1,2,3,4,5] | |
>>> b = np.array([1,2,9,4,4]) |
import numpy as np
import matplotlib.pyplot as plt
from sklearn.neighbors import NearestNeighbors
class IENN():
def __init__(self, n_estimator, sample_size, n_jobs=1):
self.n_estimator = n_estimator
self.sample_size = sample_size
class LossHistory(Callback):
def __init__(self, X_train, y_train, layer_index):
super(Callback, self).__init__()
self.layer_index = layer_index
if X_train.shape[0] >= 1000:
mask = np.random.choice(X_train.shape[0], 1000)
self.X_train_subset = X_train[mask]
self.y_train_subset = y_train[mask]
else: