-
-
Save kastnerkyle/0092c1321df080bdb4467db8adfe2453 to your computer and use it in GitHub Desktop.
A "reverse" version of the k_euler sampler for Stable Diffusion, which finds the noise that will reconstruct the supplied image
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import k_diffusion as K | |
from PIL import Image | |
from torch import autocast | |
from einops import rearrange, repeat | |
def pil_img_to_latent(model, img, batch_size=1, device='cuda', half=True): | |
init_image = pil_img_to_torch(img, half=half).to(device) | |
init_image = repeat(init_image, '1 ... -> b ...', b=batch_size) | |
if half: | |
return model.get_first_stage_encoding(model.encode_first_stage(init_image.half())) | |
return model.get_first_stage_encoding(model.encode_first_stage(init_image)) | |
def find_noise_for_image(model, pil_img, prompt, steps=150, cond_scale=1.0, verbose=False, half=True, normalize=False): | |
x = pil_img_to_latent(model, pil_img, batch_size=1, device='cuda', half=half) | |
with torch.no_grad(): | |
with autocast('cuda'): | |
uncond = model.get_learned_conditioning(['']) | |
cond = model.get_learned_conditioning([prompt]) | |
s_in = x.new_ones([x.shape[0]]) | |
dnw = K.external.CompVisDenoiser(model) | |
sigmas = dnw.get_sigmas(steps).flip(0) | |
if verbose: | |
print(sigmas) | |
with torch.no_grad(): | |
with autocast('cuda'): | |
for i in trange(1, len(sigmas)): | |
x_in = torch.cat([x] * 2) | |
sigma_in = torch.cat([sigmas[i] * s_in] * 2) | |
cond_in = torch.cat([uncond, cond]) | |
c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)] | |
t = dnw.sigma_to_t(sigma_in) | |
eps = model.apply_model(x_in * c_in, t, cond=cond_in) | |
denoised_uncond, denoised_cond = (x_in + eps * c_out).chunk(2) | |
denoised = denoised_uncond + (denoised_cond - denoised_uncond) * cond_scale | |
d = (x - denoised) / sigmas[i] | |
dt = sigmas[i] - sigmas[i - 1] | |
x = x + d * dt | |
if normalize: | |
return (x / x.std()) * sigmas[-1] | |
else: | |
return x |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment