Skip to content

Instantly share code, notes, and snippets.

@kbuzzard
Last active December 22, 2022 13:16
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save kbuzzard/a97ec40b43cf84559e8d245fc11be236 to your computer and use it in GitHub Desktop.
Save kbuzzard/a97ec40b43cf84559e8d245fc11be236 to your computer and use it in GitHub Desktop.
The { } structure constructor is taking far longer than `mk` for some reason
-- see https://github.com/leanprover-community/mathlib4/pull/1099#discussion_r1051747996
import Mathlib.Mathport.Notation -- I don't understand this file well enough to remove it, but it's only notation
set_option autoImplicit false
universe u v
instance {ι : Type u} {α : ι → Type v} [∀ i, LE (α i)] : LE (∀ i, α i) where
le x y := ∀ i, x i ≤ y i
class Top (α : Type u) where
/-- The top (`⊤`, `\top`) element -/
top : α
/-- Typeclass for the `⊥` (`\bot`) notation -/
class Bot (α : Type u) where
/-- The bot (`⊥`, `\bot`) element -/
bot : α
/-- The top (`⊤`, `\top`) element -/
notation "⊤" => Top.top
/-- The bot (`⊥`, `\bot`) element -/
notation "⊥" => Bot.bot
class Preorder (α : Type u) extends LE α, LT α where
le_refl : ∀ a : α, a ≤ a
le_trans : ∀ a b c : α, a ≤ b → b ≤ c → a ≤ c
lt := λ a b => a ≤ b ∧ ¬ b ≤ a
lt_iff_le_not_le : ∀ a b : α, a < b ↔ (a ≤ b ∧ ¬ b ≤ a) := by intros; rfl
class PartialOrder (α : Type u) extends Preorder α :=
(le_antisymm : ∀ a b : α, a ≤ b → b ≤ a → a = b)
def Set (α : Type u) := α → Prop
def setOf {α : Type u} (p : α → Prop) : Set α :=
p
namespace Set
variable {α ι : Type _}
/-- Membership in a set -/
protected def Mem (a : α) (s : Set α) : Prop :=
s a
instance : Membership α (Set α) :=
⟨Set.Mem⟩
def range (f : ι → α) : Set α :=
setOf (λ x => ∃ y, f y = x)
end Set
class InfSet (α : Type _) where
infₛ : Set α → α
class SupSet (α : Type _) where
supₛ : Set α → α
export SupSet (supₛ)
export InfSet (infₛ)
open Set
def supᵢ {α : Type _} [SupSet α] {ι} (s : ι → α) : α :=
supₛ (range s)
def infᵢ {α : Type _} [InfSet α] {ι} (s : ι → α) : α :=
infₛ (range s)
open Std.ExtendedBinder in
syntax "⨆ " extBinder ", " term:51 : term
macro_rules
| `(⨆ $x:ident, $p) => `(supᵢ fun $x:ident ↦ $p)
| `(⨆ $x:ident : $t, $p) => `(supᵢ fun $x:ident : $t ↦ $p)
| `(⨆ $x:ident $b:binderPred, $p) =>
`(supᵢ fun $x:ident ↦ satisfiesBinderPred% $x $b ∧ $p)
notation3 "⨅ "(...)", "r:(scoped f => infᵢ f) => r
class HasSup (α : Type u) where
/-- Least upper bound (`\lub` notation) -/
sup : α → α → α
class HasInf (α : Type u) where
/-- Greatest lower bound (`\glb` notation) -/
inf : α → α → α
@[inherit_doc]
infixl:68 " ⊔ " => HasSup.sup
@[inherit_doc]
infixl:69 " ⊓ " => HasInf.inf
class SemilatticeSup (α : Type u) extends HasSup α, PartialOrder α where
/-- The supremum is an upper bound on the first argument -/
protected le_sup_left : ∀ a b : α, a ≤ a ⊔ b
/-- The supremum is an upper bound on the second argument -/
protected le_sup_right : ∀ a b : α, b ≤ a ⊔ b
/-- The supremum is the *least* upper bound -/
protected sup_le : ∀ a b c : α, a ≤ c → b ≤ c → a ⊔ b ≤ c
class SemilatticeInf (α : Type u) extends HasInf α, PartialOrder α where
/-- The infimum is a lower bound on the first argument -/
protected inf_le_left : ∀ a b : α, a ⊓ b ≤ a
/-- The infimum is a lower bound on the second argument -/
protected inf_le_right : ∀ a b : α, a ⊓ b ≤ b
/-- The infimum is the *greatest* lower bound -/
protected le_inf : ∀ a b c : α, a ≤ b → a ≤ c → a ≤ b ⊓ c
class Lattice (α : Type u) extends SemilatticeSup α, SemilatticeInf α
class CompleteSemilatticeInf (α : Type _) extends PartialOrder α, InfSet α where
/-- Any element of a set is more than the set infimum. -/
infₛ_le : ∀ s, ∀ a ∈ s, infₛ s ≤ a
/-- Any lower bound is less than the set infimum. -/
le_infₛ : ∀ s a, (∀ b ∈ s, a ≤ b) → a ≤ infₛ s
class CompleteSemilatticeSup (α : Type _) extends PartialOrder α, SupSet α where
/-- Any element of a set is less than the set supremum. -/
le_supₛ : ∀ s, ∀ a ∈ s, a ≤ supₛ s
/-- Any upper bound is more than the set supremum. -/
supₛ_le : ∀ s a, (∀ b ∈ s, b ≤ a) → supₛ s ≤ a
class CompleteLattice (α : Type _) extends Lattice α, CompleteSemilatticeSup α,
CompleteSemilatticeInf α, Top α, Bot α where
/-- Any element is less than the top one. -/
protected le_top : ∀ x : α, x ≤ ⊤
/-- Any element is more than the bottom one. -/
protected bot_le : ∀ x : α, ⊥ ≤ x
class Frame (α : Type _) extends CompleteLattice α where
class Coframe (α : Type _) extends CompleteLattice α where
infᵢ_sup_le_sup_infₛ (a : α) (s : Set α) : (⨅ b, a ⊔ b) ≤ a ⊔ infₛ s -- should be ⨅ b ∈ s but I had problems with notation
class CompleteDistribLattice (α : Type _) extends Frame α where
infᵢ_sup_le_sup_infₛ : ∀ a s, (⨅ b, a ⊔ b) ≤ a ⊔ infₛ s
-- See note [lower instance priority]
instance (priority := 100) CompleteDistribLattice.toCoframe {α : Type _} [CompleteDistribLattice α] :
Coframe α :=
{ ‹CompleteDistribLattice α› with }
class OrderTop (α : Type u) [LE α] extends Top α where
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
class OrderBot (α : Type u) [LE α] extends Bot α where
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
class BoundedOrder (α : Type u) [LE α] extends OrderTop α, OrderBot α
instance(priority := 100) CompleteLattice.toBoundedOrder {α : Type _} [h : CompleteLattice α] :
BoundedOrder α :=
{ h with }
section
variable {α : Type _} [CompleteSemilatticeSup α] {s t : Set α} {a b : α}
-- --@[ematch] Porting note: attribute removed Porting note: attribute removed
theorem le_supₛ : a ∈ s → a ≤ supₛ s :=
CompleteSemilatticeSup.le_supₛ s a
theorem supₛ_le : (∀ b ∈ s, b ≤ a) → supₛ s ≤ a :=
CompleteSemilatticeSup.supₛ_le s a
end
section
variable {α : Type _} [CompleteSemilatticeInf α] {s t : Set α} {a b : α}
-- --@[ematch] Porting note: attribute removed Porting note: attribute removed
theorem infₛ_le : a ∈ s → infₛ s ≤ a :=
CompleteSemilatticeInf.infₛ_le s a
theorem le_infₛ : (∀ b ∈ s, a ≤ b) → a ≤ infₛ s :=
CompleteSemilatticeInf.le_infₛ s a
end
section
variable {α ι : Type _} [CompleteLattice α] {f g s t : ι → α} {a b : α}
theorem le_supᵢ (f : ι → α) (i : ι) : f i ≤ supᵢ f :=
le_supₛ ⟨i, rfl⟩
theorem infᵢ_le (f : ι → α) (i : ι) : infᵢ f ≤ f i :=
infₛ_le ⟨i, rfl⟩
-- --@[ematch] Porting note: attribute removed Porting note
theorem le_supᵢ' (f : ι → α) (i : ι) : f i ≤ supᵢ f :=
le_supₛ ⟨i, rfl⟩
----@[ematch] Porting note: attribute removed Porting note: attribute removed
theorem infᵢ_le' (f : ι → α) (i : ι) : infᵢ f ≤ f i :=
infₛ_le ⟨i, rfl⟩
theorem supᵢ_le (h : ∀ i, f i ≤ a) : supᵢ f ≤ a :=
supₛ_le fun _ ⟨i, Eq⟩ => Eq ▸ h i
theorem le_infᵢ (h : ∀ i, a ≤ f i) : a ≤ infᵢ f :=
le_infₛ fun _ ⟨i, Eq⟩ => Eq ▸ h i
end section
namespace Pi
variable {ι : Type _} {α' : ι → Type _}
instance [∀ i, Bot (α' i)] : Bot (∀ i, α' i) :=
⟨fun _ => ⊥⟩
@[simp]
theorem bot_apply [∀ i, Bot (α' i)] (i : ι) : (⊥ : ∀ i, α' i) i = ⊥ :=
rfl
theorem bot_def [∀ i, Bot (α' i)] : (⊥ : ∀ i, α' i) = fun _ => ⊥ :=
rfl
instance [∀ i, Top (α' i)] : Top (∀ i, α' i) :=
⟨fun _ => ⊤⟩
@[simp]
theorem top_apply [∀ i, Top (α' i)] (i : ι) : (⊤ : ∀ i, α' i) i = ⊤ :=
rfl
theorem top_def [∀ i, Top (α' i)] : (⊤ : ∀ i, α' i) = fun _ => ⊤ :=
rfl
end Pi
section LE
variable {α : Type _} [LE α] [OrderTop α] {a : α}
@[simp]
theorem le_top : a ≤ ⊤ :=
OrderTop.le_top a
end LE
section LE
variable {α : Type _} [LE α] [OrderBot α] {a : α}
@[simp]
theorem bot_le : ⊥ ≤ a :=
OrderBot.bot_le a
end LE
section SemilatticeInf
variable {α : Type _} [SemilatticeInf α] {a b c d : α}
theorem inf_le_left : a ⊓ b ≤ a :=
SemilatticeInf.inf_le_left a b
theorem inf_le_left' : a ⊓ b ≤ a :=
SemilatticeInf.inf_le_left a b
theorem inf_le_right : a ⊓ b ≤ b :=
SemilatticeInf.inf_le_right a b
theorem inf_le_right' : a ⊓ b ≤ b :=
SemilatticeInf.inf_le_right a b
theorem le_inf : a ≤ b → a ≤ c → a ≤ b ⊓ c :=
SemilatticeInf.le_inf a b c
end SemilatticeInf
section SemilatticeSup
variable {α : Type _} [SemilatticeSup α] {a b c d : α}
@[simp]
theorem le_sup_left : a ≤ a ⊔ b :=
SemilatticeSup.le_sup_left a b
-- Porting note: no ematch attribute
--@[ematch]
theorem le_sup_left' : a ≤ a ⊔ b :=
le_sup_left
@[simp]
theorem le_sup_right : b ≤ a ⊔ b :=
SemilatticeSup.le_sup_right a b
theorem sup_le : a ≤ c → b ≤ c → a ⊔ b ≤ c :=
SemilatticeSup.sup_le a b c
end SemilatticeSup
theorem le_refl {α : Type _} [Preorder α] : ∀ (a : α), a ≤ a :=
Preorder.le_refl
theorem le_trans {α : Type _} [Preorder α] : ∀ {a b c : α}, a ≤ b → b ≤ c → a ≤ c :=
Preorder.le_trans _ _ _
theorem le_antisymm {α : Type _} [PartialOrder α] : ∀ {a b : α}, a ≤ b → b ≤ a → a = b :=
PartialOrder.le_antisymm _ _
namespace Pi
variable {ι : Type _} {α' : ι → Type _}
protected instance LE {ι : Type u} {α : ι → Type v} [∀ i, LE (α i)] : LE (∀ i, α i) where
le x y := ∀ i, x i ≤ y i
instance Preorder {ι : Type u} {α : ι → Type v} [∀ i, Preorder (α i)] : Preorder (∀ i, α i) :=
{ Pi.LE with
le_refl := fun a i ↦ le_refl (a i)
le_trans := fun a b c h₁ h₂ i ↦ le_trans (h₁ i) (h₂ i) }
instance PartialOrder {ι : Type u} {α : ι → Type v} [∀ i, PartialOrder (α i)] :
PartialOrder (∀ i, α i) :=
{ Pi.Preorder with
le_antisymm := fun _ _ h1 h2 ↦ funext fun b ↦ le_antisymm (h1 b) (h2 b) }
instance semilatticeSup [∀ i, SemilatticeSup (α' i)] : SemilatticeSup (∀ i, α' i) where
le_sup_left _ _ _ := le_sup_left
le_sup_right _ _ _ := le_sup_right
sup_le _ _ _ ac bc i := sup_le (ac i) (bc i)
instance semilatticeInf [∀ i, SemilatticeInf (α' i)] : SemilatticeInf (∀ i, α' i) where
inf_le_left _ _ _ := inf_le_left
inf_le_right _ _ _ := inf_le_right
le_inf _ _ _ ac bc i := le_inf (ac i) (bc i)
instance lattice [∀ i, Lattice (α' i)] : Lattice (∀ i, α' i) :=
{ Pi.semilatticeSup, Pi.semilatticeInf with }
instance orderTop [∀ i, LE (α' i)] [∀ i, OrderTop (α' i)] : OrderTop (∀ i, α' i) :=
{ inferInstanceAs (Top (∀ i, α' i)) with le_top := fun _ _ => le_top }
instance orderBot [∀ i, LE (α' i)] [∀ i, OrderBot (α' i)] : OrderBot (∀ i, α' i) :=
{ inferInstanceAs (Bot (∀ i, α' i)) with bot_le := fun _ _ => bot_le }
instance boundedOrder [∀ i, LE (α' i)] [∀ i, BoundedOrder (α' i)] : BoundedOrder (∀ i, α' i) :=
{ Pi.orderTop, Pi.orderBot with }
instance SupSet {α : Type _} {β : α → Type _} [∀ i, SupSet (β i)] : SupSet (∀ i, β i) :=
sorry
instance InfSet {α : Type _} {β : α → Type _} [∀ i, InfSet (β i)] : InfSet (∀ i, β i) :=
sorry
instance completeLattice {α : Type _} {β : α → Type _} [∀ i, CompleteLattice (β i)] :
CompleteLattice (∀ i, β i) :=
{ Pi.boundedOrder, Pi.lattice with
le_supₛ := sorry
infₛ_le := sorry
supₛ_le := sorry
le_infₛ := sorry
}
instance frame {ι : Type _} {π : ι → Type _} [∀ i, Frame (π i)] : Frame (∀ i, π i) :=
{ Pi.completeLattice with }
instance coframe {ι : Type _} {π : ι → Type _} [∀ i, Coframe (π i)] : Coframe (∀ i, π i) :=
{ Pi.completeLattice with infᵢ_sup_le_sup_infₛ := sorry }
end Pi
-- very quick
instance Pi.completeDistribLattice' {ι : Type _} {π : ι → Type _}
[∀ i, CompleteDistribLattice (π i)] : CompleteDistribLattice (∀ i, π i) :=
CompleteDistribLattice.mk (Pi.coframe.infᵢ_sup_le_sup_infₛ)
-- takes a long time
instance Pi.completeDistribLattice'' {ι : Type _} {π : ι → Type _}
[∀ i, CompleteDistribLattice (π i)] : CompleteDistribLattice (∀ i, π i) :=
{ Pi.frame, Pi.coframe with }
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment