Created
March 26, 2020 13:41
-
-
Save kbuzzard/d578a110a5f409c7a4c217e48f077c3a to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import group.definitions -- definition of a group | |
namespace mygroup | |
variables {G : Type} [group G] -- let G be a group | |
/- | |
Axioms for a group: | |
mul_assoc : ∀ (a b c : G), (a * b) * c = a * (b * c) | |
one_mul : ∀ (a : G), 1 * a = a | |
mul_left_inv : ∀ (a : G), a⁻¹ * a = 1 | |
-/ | |
-- First goal: prove a * 1 = a and a * a⁻¹ = 1 | |
namespace group | |
attribute [simp] mul_left_inv one_mul | |
lemma mul_left_cancel (a x y : G) | |
(Habac : a * x = a * y) : x = y := | |
begin | |
calc x = 1 * x : by rw one_mul | |
... = (a⁻¹ * a) * x : by rw mul_left_inv | |
... = a⁻¹ * (a * x) : by rw mul_assoc | |
... = a⁻¹ * (a * y) : by rw Habac | |
... = y : by rw [←mul_assoc, mul_left_inv, one_mul] | |
end | |
lemma mul_eq_of_eq_inv_mul {a x y : G} | |
(h : x = a⁻¹ * y) : a * x = y := | |
begin | |
apply mul_left_cancel a⁻¹, | |
rw ←mul_assoc, | |
simp, | |
assumption | |
end | |
@[simp] | |
theorem mul_one (a : G) : a * 1 = a := | |
begin | |
apply mul_eq_of_eq_inv_mul, | |
simp, | |
end | |
@[simp] | |
theorem mul_right_inv (a : G) : a * a⁻¹ = 1 := | |
begin | |
apply mul_eq_of_eq_inv_mul, | |
simp | |
end | |
lemma eq_mul_inv_of_mul_eq {a b c : G} (h : a * c = b) : a = b * c⁻¹ := | |
begin | |
rw ←h, | |
simp [mul_assoc], | |
end | |
lemma mul_left_eq_self {a b : G} : a * b = b ↔ a = 1 := | |
begin | |
sorry | |
end | |
lemma eq_inv_of_mul_eq_one {a b : G} (h : a * b = 1) : a = b⁻¹ := | |
begin | |
have h2 : (a * b) * b⁻¹ = 1 * b⁻¹, | |
rw h, | |
simp [mul_assoc] at h2, | |
assumption, | |
end | |
lemma inv_inv (a : G) : a ⁻¹ ⁻¹ = a := | |
begin | |
symmetry, | |
apply eq_inv_of_mul_eq_one _, | |
simp, | |
end | |
lemma inv_eq_of_mul_eq_one {a b : G} (h : a * b = 1) : a⁻¹ = b := | |
begin | |
sorry | |
end | |
end group | |
end mygroup |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment