Skip to content

Instantly share code, notes, and snippets.

@magsol
Created May 4, 2017 19:36
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save magsol/9d383b8a49d2fc3caba1b809c297bcb2 to your computer and use it in GitHub Desktop.
Save magsol/9d383b8a49d2fc3caba1b809c297bcb2 to your computer and use it in GitHub Desktop.
An animated 3D matplotlib figure that rotates incrementally as the plot is drawn.
import argparse
import matplotlib.pyplot as plot
from matplotlib import animation
from mpl_toolkits.mplot3d.axes3d import Axes3D
import numpy as np
import scipy.io
import ar.ar as AR
if __name__ == "__main__":
parser = argparse.ArgumentParser(description = 'Cilia AR Subspace Plotting',
epilog = 'lol moar cilia', add_help = 'How to use',
prog = 'python -m cilia.pipelines.ar.subspace')
parser.add_argument('-i', '--input', required = True,
help = 'Path to patches created by running AR cross-validation script.')
parser.add_argument('-q', '--degree', type = int, required = True,
help = 'Number of principal components to use.')
parser.add_argument('-r', '--rois', required = True,
help = 'Path to dictionary containing the names of the ROIs used.')
parser.add_argument('-f', '--files', required = True,
help = 'Path to text file containing ROIs to build a figure from.')
parser.add_argument('-o', '--output', required = True,
help = 'Output directory for any plots.')
args = vars(parser.parse_args())
# Load the matfile.
m = scipy.io.loadmat(args['input'])
rois = scipy.io.loadmat(args['rois'])['rois']
D = np.array(m['D'])
frames = D.shape[1] / len(rois)
examples = np.loadtxt(args['files'], dtype = np.str)
N_trajectories = np.size(examples)
# Compute the subspace.
X, C = AR.state_space(D, args['degree'])
x_t = np.zeros(shape = (N_trajectories, frames, 3))
for i, roi in list(enumerate(rois)):
roi = roi.strip()
if roi in examples:
# Which one?
index = np.where(examples == roi)[0][0]
# Extract the state-space for this particular ROI.
x_t[index] = X[:3, (i * frames):(i + 1) * frames].T
# Locate the ROIs of interest in D.
# Set up figure & 3D axis for animation
fig = plot.figure()
ax = fig.add_axes([0, 0, 1, 1], projection='3d')
#ax.axis('off')
# choose a different color for each trajectory
colors = ['b', 'r']
# set up lines and points
lines = sum([ax.plot([], [], [], '-', c=c)
for c in colors], [])
pts = sum([ax.plot([], [], [], 'o', c=c)
for c in colors], [])
# prepare the axes limits
ax.set_xlim((-2, 2))
ax.set_ylim((-2, 2))
ax.set_zlim((-2, 2))
ax.set_ylabel("$x_2$", fontsize = 24)
ax.set_xlabel("$x_1$", fontsize = 24)
ax.set_zlabel("$x_3$", fontsize = 24)
# set point-of-view: specified by (altitude degrees, azimuth degrees)
ax.view_init(2, 0)
# initialization function: plot the background of each frame
def init():
for line, pt in zip(lines, pts):
line.set_data([], [])
line.set_3d_properties([])
pt.set_data([], [])
pt.set_3d_properties([])
return lines + pts
# animation function. This will be called sequentially with the frame number
def animate(i):
# we'll step two time-steps per frame. This leads to nice results.
i = i % x_t.shape[1]
for line, pt, xi in zip(lines, pts, x_t):
x, y, z = xi[:i].T
line.set_data(x, y)
line.set_3d_properties(z)
pt.set_data(x[-1:], y[-1:])
pt.set_3d_properties(z[-1:])
ax.view_init(30, 0.3 * i * 5)
fig.canvas.draw()
return lines + pts
# instantiate the animator.
anim = animation.FuncAnimation(fig, animate, init_func=init,
frames=500, interval=30, blit=True)
# Save as mp4. This requires mplayer or ffmpeg to be installed
anim.save('ar_space.mp4', fps=15, extra_args=['-vcodec', 'libx264'])
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment