Adjusting yolo.py to return raw boxes and classes for images
# -*- coding: utf-8 -*- | |
""" | |
Class definition of YOLO_v3 style detection model on image and video | |
""" | |
import colorsys | |
import os | |
from timeit import default_timer as timer | |
import numpy as np | |
from keras import backend as K | |
from keras.models import load_model | |
from keras.layers import Input | |
from PIL import Image, ImageFont, ImageDraw | |
from yolo3.model import yolo_eval, yolo_body, tiny_yolo_body | |
from yolo3.utils import letterbox_image | |
import os | |
from keras.utils import multi_gpu_model | |
class YOLO(object): | |
_defaults = { | |
"model_path": 'model_data/yolo.h5', | |
"anchors_path": 'model_data/yolo_anchors.txt', | |
"classes_path": 'model_data/coco_classes.txt', | |
"score" : 0.3, | |
"iou" : 0.45, | |
"model_image_size" : (416, 416), | |
"gpu_num" : 1, | |
} | |
@classmethod | |
def get_defaults(cls, n): | |
if n in cls._defaults: | |
return cls._defaults[n] | |
else: | |
return "Unrecognized attribute name '" + n + "'" | |
def __init__(self, **kwargs): | |
self.__dict__.update(self._defaults) # set up default values | |
self.__dict__.update(kwargs) # and update with user overrides | |
self.class_names = self._get_class() | |
self.anchors = self._get_anchors() | |
self.sess = K.get_session() | |
self.boxes, self.scores, self.classes = self.generate() | |
def _get_class(self): | |
classes_path = os.path.expanduser(self.classes_path) | |
with open(classes_path) as f: | |
class_names = f.readlines() | |
class_names = [c.strip() for c in class_names] | |
return class_names | |
def _get_anchors(self): | |
anchors_path = os.path.expanduser(self.anchors_path) | |
with open(anchors_path) as f: | |
anchors = f.readline() | |
anchors = [float(x) for x in anchors.split(',')] | |
return np.array(anchors).reshape(-1, 2) | |
def generate(self): | |
model_path = os.path.expanduser(self.model_path) | |
assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.' | |
# Load model, or construct model and load weights. | |
num_anchors = len(self.anchors) | |
num_classes = len(self.class_names) | |
is_tiny_version = num_anchors==6 # default setting | |
try: | |
self.yolo_model = load_model(model_path, compile=False) | |
except: | |
self.yolo_model = tiny_yolo_body(Input(shape=(None,None,3)), num_anchors//2, num_classes) \ | |
if is_tiny_version else yolo_body(Input(shape=(None,None,3)), num_anchors//3, num_classes) | |
self.yolo_model.load_weights(self.model_path) # make sure model, anchors and classes match | |
else: | |
assert self.yolo_model.layers[-1].output_shape[-1] == \ | |
num_anchors/len(self.yolo_model.output) * (num_classes + 5), \ | |
'Mismatch between model and given anchor and class sizes' | |
print('{} model, anchors, and classes loaded.'.format(model_path)) | |
# Generate colors for drawing bounding boxes. | |
hsv_tuples = [(x / len(self.class_names), 1., 1.) | |
for x in range(len(self.class_names))] | |
self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples)) | |
self.colors = list( | |
map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), | |
self.colors)) | |
np.random.seed(10101) # Fixed seed for consistent colors across runs. | |
np.random.shuffle(self.colors) # Shuffle colors to decorrelate adjacent classes. | |
np.random.seed(None) # Reset seed to default. | |
# Generate output tensor targets for filtered bounding boxes. | |
self.input_image_shape = K.placeholder(shape=(2, )) | |
if self.gpu_num>=2: | |
self.yolo_model = multi_gpu_model(self.yolo_model, gpus=self.gpu_num) | |
boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors, | |
len(self.class_names), self.input_image_shape, | |
score_threshold=self.score, iou_threshold=self.iou) | |
return boxes, scores, classes | |
def detect_image(self, image): | |
start = timer() | |
if self.model_image_size != (None, None): | |
assert self.model_image_size[0]%32 == 0, 'Multiples of 32 required' | |
assert self.model_image_size[1]%32 == 0, 'Multiples of 32 required' | |
boxed_image = letterbox_image(image, tuple(reversed(self.model_image_size))) | |
else: | |
new_image_size = (image.width - (image.width % 32), | |
image.height - (image.height % 32)) | |
boxed_image = letterbox_image(image, new_image_size) | |
image_data = np.array(boxed_image, dtype='float32') | |
print(image_data.shape) | |
image_data /= 255. | |
image_data = np.expand_dims(image_data, 0) # Add batch dimension. | |
out_boxes, out_scores, out_classes = self.sess.run( | |
[self.boxes, self.scores, self.classes], | |
feed_dict={ | |
self.yolo_model.input: image_data, | |
self.input_image_shape: [image.size[1], image.size[0]], | |
K.learning_phase(): 0 | |
}) | |
return out_boxes, out_scores, out_classes | |
print('Found {} boxes for {}'.format(len(out_boxes), 'img')) | |
font = ImageFont.truetype(font='font/FiraMono-Medium.otf', | |
size=np.floor(3e-2 * image.size[1] + 0.5).astype('int32')) | |
thickness = (image.size[0] + image.size[1]) // 300 | |
for i, c in reversed(list(enumerate(out_classes))): | |
predicted_class = self.class_names[c] | |
box = out_boxes[i] | |
score = out_scores[i] | |
label = '{} {:.2f}'.format(predicted_class, score) | |
draw = ImageDraw.Draw(image) | |
label_size = draw.textsize(label, font) | |
top, left, bottom, right = box | |
top = max(0, np.floor(top + 0.5).astype('int32')) | |
left = max(0, np.floor(left + 0.5).astype('int32')) | |
bottom = min(image.size[1], np.floor(bottom + 0.5).astype('int32')) | |
right = min(image.size[0], np.floor(right + 0.5).astype('int32')) | |
print(label, (left, top), (right, bottom)) | |
if top - label_size[1] >= 0: | |
text_origin = np.array([left, top - label_size[1]]) | |
else: | |
text_origin = np.array([left, top + 1]) | |
# My kingdom for a good redistributable image drawing library. | |
for i in range(thickness): | |
draw.rectangle( | |
[left + i, top + i, right - i, bottom - i], | |
outline=self.colors[c]) | |
draw.rectangle( | |
[tuple(text_origin), tuple(text_origin + label_size)], | |
fill=self.colors[c]) | |
draw.text(text_origin, label, fill=(0, 0, 0), font=font) | |
del draw | |
end = timer() | |
print(end - start) | |
return image | |
def close_session(self): | |
self.sess.close() | |
def detect_video(yolo, video_path, output_path=""): | |
import cv2 | |
vid = cv2.VideoCapture(video_path) | |
if not vid.isOpened(): | |
raise IOError("Couldn't open webcam or video") | |
video_FourCC = int(vid.get(cv2.CAP_PROP_FOURCC)) | |
video_fps = vid.get(cv2.CAP_PROP_FPS) | |
video_size = (int(vid.get(cv2.CAP_PROP_FRAME_WIDTH)), | |
int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT))) | |
isOutput = True if output_path != "" else False | |
if isOutput: | |
print("!!! TYPE:", type(output_path), type(video_FourCC), type(video_fps), type(video_size)) | |
out = cv2.VideoWriter(output_path, video_FourCC, video_fps, video_size) | |
accum_time = 0 | |
curr_fps = 0 | |
fps = "FPS: ??" | |
prev_time = timer() | |
while True: | |
return_value, frame = vid.read() | |
image = Image.fromarray(frame) | |
image = yolo.detect_image(image) | |
result = np.asarray(image) | |
curr_time = timer() | |
exec_time = curr_time - prev_time | |
prev_time = curr_time | |
accum_time = accum_time + exec_time | |
curr_fps = curr_fps + 1 | |
if accum_time > 1: | |
accum_time = accum_time - 1 | |
fps = "FPS: " + str(curr_fps) | |
curr_fps = 0 | |
cv2.putText(result, text=fps, org=(3, 15), fontFace=cv2.FONT_HERSHEY_SIMPLEX, | |
fontScale=0.50, color=(255, 0, 0), thickness=2) | |
cv2.namedWindow("result", cv2.WINDOW_NORMAL) | |
cv2.imshow("result", result) | |
if isOutput: | |
out.write(result) | |
if cv2.waitKey(1) & 0xFF == ord('q'): | |
break | |
yolo.close_session() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment