Skip to content

Instantly share code, notes, and snippets.

Marcel marcelcaraciolo

Block or report user

Report or block marcelcaraciolo

Hide content and notifications from this user.

Learn more about blocking users

Contact Support about this user’s behavior.

Learn more about reporting abuse

Report abuse
View GitHub Profile
@marcelcaraciolo
marcelcaraciolo / admin.py
Created Feb 25, 2015
Simple admin example
View admin.py
# -*- coding: utf-8 -*-
import xlwt
from django.contrib import admin
from django.http import HttpResponse
from models import (PaymentForm, Order, OrderItem,
Discount, Affiliate)
from forms import DiscountForm
View vm.py
class VM(object):
def __init__(self, uuid, name, status):
self.uuid = uuid
self.name = name
self.status = status
def __repr__(self):
return '%s - %s (%s)' % (self.uuid, self.name, self.status)
def export(self, directory_name=None):
@marcelcaraciolo
marcelcaraciolo / example.py
Last active Aug 29, 2015
example command
View example.py
def can_pipe(command, fastq_file):
'''
bwa-mem handles longer (> 70bp) reads with improved piping.
Randomly samples 5000 reads from the first two million.
Default to no piping if more than 75% of the sampled reads are small.
'''
min_size = 70
thresh = 0.75
head_count = 8000000
tocheck = 5000
View node_digit_dependencies.js
var express = require('express')
, routes = require('./routes')
, http = require('http')
, path = require('path')
, fs = require('fs')
, uuid = require('uuid')
, yhat = require('yhat');
var app = express();
var yh = yhat.init("your username", "your apikey");
View digits_deploy.py
from yhat import BaseModel, Yhat
class DigitModel(BaseModel):
def require(self):
from PIL import Image
from StringIO import StringIO
import base64
View digits_classifier.py
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import confusion_matrix
clf = KNeighborsClassifier(n_neighbors=13)
clf.fit(X_train, y_train)
print "done"
print "="*20
print clf
print "Confusion Matrix"
View extract_digit_fetaures.py
from sklearn.decomposition import RandomizedPCA
from sklearn.preprocessing import StandardScaler
pca = RandomizedPCA(n_components=10)
std_scaler = StandardScaler()
X_train, X_test, y_train, y_test = train_test_split(data, labels, test_size=0.1)
X_train = pca.fit_transform(X_train)
X_test = pca.transform(X_test)
View get_digits.py
import os
from PIL import Image
import numpy as np
files = [f for f in os.listdir("handwriting/numbers/")]
files = ["handwriting/numbers/" + f for f in files]
STANDARD_SIZE = (50, 50)
def get_image_data(filename):
img = Image.open(filename)
View node.js
$("#send").click(function(e) {
// convert canvas to data url
var img = canvas.toDataURL();
// make request to server
$.post("/", {img: img, n: n}, function() {
// when request is finished, redirect to homepage
window.location.replace("/");
})
return false;
});
@marcelcaraciolo
marcelcaraciolo / sequence.pyx
Created Apr 25, 2014
Sequence example file
View sequence.pyx
"""
Sequence
--------
String object representing biological sequences with alphabets.
"""
You can’t perform that action at this time.