Last active
April 21, 2024 13:41
-
-
Save mblondel/586753 to your computer and use it in GitHub Desktop.
Support Vector Machines
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Mathieu Blondel, September 2010 | |
# License: BSD 3 clause | |
import numpy as np | |
from numpy import linalg | |
import cvxopt | |
import cvxopt.solvers | |
def linear_kernel(x1, x2): | |
return np.dot(x1, x2) | |
def polynomial_kernel(x, y, p=3): | |
return (1 + np.dot(x, y)) ** p | |
def gaussian_kernel(x, y, sigma=5.0): | |
return np.exp(-linalg.norm(x-y)**2 / (2 * (sigma ** 2))) | |
class SVM(object): | |
def __init__(self, kernel=linear_kernel, C=None): | |
self.kernel = kernel | |
self.C = C | |
if self.C is not None: self.C = float(self.C) | |
def fit(self, X, y): | |
n_samples, n_features = X.shape | |
# Gram matrix | |
K = np.zeros((n_samples, n_samples)) | |
for i in range(n_samples): | |
for j in range(n_samples): | |
K[i,j] = self.kernel(X[i], X[j]) | |
P = cvxopt.matrix(np.outer(y,y) * K) | |
q = cvxopt.matrix(np.ones(n_samples) * -1) | |
A = cvxopt.matrix(y, (1,n_samples)) | |
b = cvxopt.matrix(0.0) | |
if self.C is None: | |
G = cvxopt.matrix(np.diag(np.ones(n_samples) * -1)) | |
h = cvxopt.matrix(np.zeros(n_samples)) | |
else: | |
tmp1 = np.diag(np.ones(n_samples) * -1) | |
tmp2 = np.identity(n_samples) | |
G = cvxopt.matrix(np.vstack((tmp1, tmp2))) | |
tmp1 = np.zeros(n_samples) | |
tmp2 = np.ones(n_samples) * self.C | |
h = cvxopt.matrix(np.hstack((tmp1, tmp2))) | |
# solve QP problem | |
solution = cvxopt.solvers.qp(P, q, G, h, A, b) | |
# Lagrange multipliers | |
a = np.ravel(solution['x']) | |
# Support vectors have non zero lagrange multipliers | |
sv = a > 1e-5 | |
ind = np.arange(len(a))[sv] | |
self.a = a[sv] | |
self.sv = X[sv] | |
self.sv_y = y[sv] | |
print "%d support vectors out of %d points" % (len(self.a), n_samples) | |
# Intercept | |
self.b = 0 | |
for n in range(len(self.a)): | |
self.b += self.sv_y[n] | |
self.b -= np.sum(self.a * self.sv_y * K[ind[n],sv]) | |
self.b /= len(self.a) | |
# Weight vector | |
if self.kernel == linear_kernel: | |
self.w = np.zeros(n_features) | |
for n in range(len(self.a)): | |
self.w += self.a[n] * self.sv_y[n] * self.sv[n] | |
else: | |
self.w = None | |
def project(self, X): | |
if self.w is not None: | |
return np.dot(X, self.w) + self.b | |
else: | |
y_predict = np.zeros(len(X)) | |
for i in range(len(X)): | |
s = 0 | |
for a, sv_y, sv in zip(self.a, self.sv_y, self.sv): | |
s += a * sv_y * self.kernel(X[i], sv) | |
y_predict[i] = s | |
return y_predict + self.b | |
def predict(self, X): | |
return np.sign(self.project(X)) | |
if __name__ == "__main__": | |
import pylab as pl | |
def gen_lin_separable_data(): | |
# generate training data in the 2-d case | |
mean1 = np.array([0, 2]) | |
mean2 = np.array([2, 0]) | |
cov = np.array([[0.8, 0.6], [0.6, 0.8]]) | |
X1 = np.random.multivariate_normal(mean1, cov, 100) | |
y1 = np.ones(len(X1)) | |
X2 = np.random.multivariate_normal(mean2, cov, 100) | |
y2 = np.ones(len(X2)) * -1 | |
return X1, y1, X2, y2 | |
def gen_non_lin_separable_data(): | |
mean1 = [-1, 2] | |
mean2 = [1, -1] | |
mean3 = [4, -4] | |
mean4 = [-4, 4] | |
cov = [[1.0,0.8], [0.8, 1.0]] | |
X1 = np.random.multivariate_normal(mean1, cov, 50) | |
X1 = np.vstack((X1, np.random.multivariate_normal(mean3, cov, 50))) | |
y1 = np.ones(len(X1)) | |
X2 = np.random.multivariate_normal(mean2, cov, 50) | |
X2 = np.vstack((X2, np.random.multivariate_normal(mean4, cov, 50))) | |
y2 = np.ones(len(X2)) * -1 | |
return X1, y1, X2, y2 | |
def gen_lin_separable_overlap_data(): | |
# generate training data in the 2-d case | |
mean1 = np.array([0, 2]) | |
mean2 = np.array([2, 0]) | |
cov = np.array([[1.5, 1.0], [1.0, 1.5]]) | |
X1 = np.random.multivariate_normal(mean1, cov, 100) | |
y1 = np.ones(len(X1)) | |
X2 = np.random.multivariate_normal(mean2, cov, 100) | |
y2 = np.ones(len(X2)) * -1 | |
return X1, y1, X2, y2 | |
def split_train(X1, y1, X2, y2): | |
X1_train = X1[:90] | |
y1_train = y1[:90] | |
X2_train = X2[:90] | |
y2_train = y2[:90] | |
X_train = np.vstack((X1_train, X2_train)) | |
y_train = np.hstack((y1_train, y2_train)) | |
return X_train, y_train | |
def split_test(X1, y1, X2, y2): | |
X1_test = X1[90:] | |
y1_test = y1[90:] | |
X2_test = X2[90:] | |
y2_test = y2[90:] | |
X_test = np.vstack((X1_test, X2_test)) | |
y_test = np.hstack((y1_test, y2_test)) | |
return X_test, y_test | |
def plot_margin(X1_train, X2_train, clf): | |
def f(x, w, b, c=0): | |
# given x, return y such that [x,y] in on the line | |
# w.x + b = c | |
return (-w[0] * x - b + c) / w[1] | |
pl.plot(X1_train[:,0], X1_train[:,1], "ro") | |
pl.plot(X2_train[:,0], X2_train[:,1], "bo") | |
pl.scatter(clf.sv[:,0], clf.sv[:,1], s=100, c="g") | |
# w.x + b = 0 | |
a0 = -4; a1 = f(a0, clf.w, clf.b) | |
b0 = 4; b1 = f(b0, clf.w, clf.b) | |
pl.plot([a0,b0], [a1,b1], "k") | |
# w.x + b = 1 | |
a0 = -4; a1 = f(a0, clf.w, clf.b, 1) | |
b0 = 4; b1 = f(b0, clf.w, clf.b, 1) | |
pl.plot([a0,b0], [a1,b1], "k--") | |
# w.x + b = -1 | |
a0 = -4; a1 = f(a0, clf.w, clf.b, -1) | |
b0 = 4; b1 = f(b0, clf.w, clf.b, -1) | |
pl.plot([a0,b0], [a1,b1], "k--") | |
pl.axis("tight") | |
pl.show() | |
def plot_contour(X1_train, X2_train, clf): | |
pl.plot(X1_train[:,0], X1_train[:,1], "ro") | |
pl.plot(X2_train[:,0], X2_train[:,1], "bo") | |
pl.scatter(clf.sv[:,0], clf.sv[:,1], s=100, c="g") | |
X1, X2 = np.meshgrid(np.linspace(-6,6,50), np.linspace(-6,6,50)) | |
X = np.array([[x1, x2] for x1, x2 in zip(np.ravel(X1), np.ravel(X2))]) | |
Z = clf.project(X).reshape(X1.shape) | |
pl.contour(X1, X2, Z, [0.0], colors='k', linewidths=1, origin='lower') | |
pl.contour(X1, X2, Z + 1, [0.0], colors='grey', linewidths=1, origin='lower') | |
pl.contour(X1, X2, Z - 1, [0.0], colors='grey', linewidths=1, origin='lower') | |
pl.axis("tight") | |
pl.show() | |
def test_linear(): | |
X1, y1, X2, y2 = gen_lin_separable_data() | |
X_train, y_train = split_train(X1, y1, X2, y2) | |
X_test, y_test = split_test(X1, y1, X2, y2) | |
clf = SVM() | |
clf.fit(X_train, y_train) | |
y_predict = clf.predict(X_test) | |
correct = np.sum(y_predict == y_test) | |
print "%d out of %d predictions correct" % (correct, len(y_predict)) | |
plot_margin(X_train[y_train==1], X_train[y_train==-1], clf) | |
def test_non_linear(): | |
X1, y1, X2, y2 = gen_non_lin_separable_data() | |
X_train, y_train = split_train(X1, y1, X2, y2) | |
X_test, y_test = split_test(X1, y1, X2, y2) | |
clf = SVM(gaussian_kernel) | |
clf.fit(X_train, y_train) | |
y_predict = clf.predict(X_test) | |
correct = np.sum(y_predict == y_test) | |
print "%d out of %d predictions correct" % (correct, len(y_predict)) | |
plot_contour(X_train[y_train==1], X_train[y_train==-1], clf) | |
def test_soft(): | |
X1, y1, X2, y2 = gen_lin_separable_overlap_data() | |
X_train, y_train = split_train(X1, y1, X2, y2) | |
X_test, y_test = split_test(X1, y1, X2, y2) | |
clf = SVM(C=0.1) | |
clf.fit(X_train, y_train) | |
y_predict = clf.predict(X_test) | |
correct = np.sum(y_predict == y_test) | |
print "%d out of %d predictions correct" % (correct, len(y_predict)) | |
plot_contour(X_train[y_train==1], X_train[y_train==-1], clf) | |
test_soft() |
The corresponding blog post is archived here
thank you !
How can I modify this code to implement a SVR?
Here's the theoritical explanation of SVR which you can find here
Thx!
if anyone is interested in a possible implementation of an SVR according to the pdf linked by @guruprasaad123, they can find the code here: https://github.com/dmeoli/optiml/blob/master/optiml/ml/svm/_base.py
@mblondel I am really late to the party but feel like line 75 is incorrect. Shouldn't it me self.w[n] . Do correct me if i am wrong on this.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
The corresponding blog post is archived here
https://web.archive.org/web/20140429090836/http://www.mblondel.org/journal/2010/09/19/support-vector-machines-in-python/