View svm.py
# Mathieu Blondel, September 2010
# License: BSD 3 clause
import numpy as np
from numpy import linalg
import cvxopt
import cvxopt.solvers
def linear_kernel(x1, x2):
return np.dot(x1, x2)
View letor_metrics.py
# (C) Mathieu Blondel, November 2013
# License: BSD 3 clause
import numpy as np
def ranking_precision_score(y_true, y_score, k=10):
"""Precision at rank k
Parameters
View kmeans.py
# Copyright Mathieu Blondel December 2011
# License: BSD 3 clause
import numpy as np
import pylab as pl
from sklearn.base import BaseEstimator
from sklearn.utils import check_random_state
from sklearn.cluster import MiniBatchKMeans
from sklearn.cluster import KMeans as KMeansGood
View matrix_sketch.py
# (C) Mathieu Blondel, November 2013
# License: BSD 3 clause
import numpy as np
from scipy.linalg import svd
def frequent_directions(A, ell, verbose=False):
"""
Return the sketch of matrix A.
View lda_gibbs.py
"""
(C) Mathieu Blondel - 2010
License: BSD 3 clause
Implementation of the collapsed Gibbs sampler for
Latent Dirichlet Allocation, as described in
Finding scientifc topics (Griffiths and Steyvers)
"""
View multiclass_svm.py
"""
Multiclass SVMs (Crammer-Singer formulation).
A pure Python re-implementation of:
Large-scale Multiclass Support Vector Machine Training via Euclidean Projection onto the Simplex.
Mathieu Blondel, Akinori Fujino, and Naonori Ueda.
ICPR 2014.
http://www.mblondel.org/publications/mblondel-icpr2014.pdf
"""
View kernel_kmeans.py
"""Kernel K-means"""
# Author: Mathieu Blondel <mathieu@mblondel.org>
# License: BSD 3 clause
import numpy as np
from sklearn.base import BaseEstimator, ClusterMixin
from sklearn.metrics.pairwise import pairwise_kernels
from sklearn.utils import check_random_state
View hmm.tex
% (C) Mathieu Blondel, July 2010
\documentclass[a4paper,10pt]{article}
\usepackage[english]{babel}
\usepackage[T1]{fontenc}
\usepackage[ansinew]{inputenc}
\usepackage{lmodern}
\usepackage{amsmath}
View nmf_cd.py
"""
NMF by coordinate descent, designed for sparse data (without missing values)
"""
# Author: Mathieu Blondel <mathieu@mblondel.org>
# License: BSD 3 clause
import numpy as np
import scipy.sparse as sp
import numba
View second_order_ode.py
#!/usr/bin/env python
"""
Find the solution for the second order differential equation
u'' = -u
with u(0) = 10 and u'(0) = -5
using the Euler and the Runge-Kutta methods.