Create a gist now

Instantly share code, notes, and snippets.

@mbostock /.block forked from mbostock/.block
Last active Jun 6, 2018

Embed
Scatterplot Matrix Brushing
license: gpl-3.0
border: no
height: 960

The scatterplot matrix visualizations pairwise correlations for multi-dimensional data; each cell in the matrix is a scatterplot. This example uses Anderson's data of iris flowers on the Gaspé Peninsula. Scatterplot matrix design invented by J. A. Hartigan; see also R and GGobi. Data on Iris flowers collected by Edgar Anderson and published by Ronald Fisher.

See also this simpler static version without brushing.

sepal length sepal width petal length petal width species
5.1 3.5 1.4 0.2 setosa
4.9 3.0 1.4 0.2 setosa
4.7 3.2 1.3 0.2 setosa
4.6 3.1 1.5 0.2 setosa
5.0 3.6 1.4 0.2 setosa
5.4 3.9 1.7 0.4 setosa
4.6 3.4 1.4 0.3 setosa
5.0 3.4 1.5 0.2 setosa
4.4 2.9 1.4 0.2 setosa
4.9 3.1 1.5 0.1 setosa
5.4 3.7 1.5 0.2 setosa
4.8 3.4 1.6 0.2 setosa
4.8 3.0 1.4 0.1 setosa
4.3 3.0 1.1 0.1 setosa
5.8 4.0 1.2 0.2 setosa
5.7 4.4 1.5 0.4 setosa
5.4 3.9 1.3 0.4 setosa
5.1 3.5 1.4 0.3 setosa
5.7 3.8 1.7 0.3 setosa
5.1 3.8 1.5 0.3 setosa
5.4 3.4 1.7 0.2 setosa
5.1 3.7 1.5 0.4 setosa
4.6 3.6 1.0 0.2 setosa
5.1 3.3 1.7 0.5 setosa
4.8 3.4 1.9 0.2 setosa
5.0 3.0 1.6 0.2 setosa
5.0 3.4 1.6 0.4 setosa
5.2 3.5 1.5 0.2 setosa
5.2 3.4 1.4 0.2 setosa
4.7 3.2 1.6 0.2 setosa
4.8 3.1 1.6 0.2 setosa
5.4 3.4 1.5 0.4 setosa
5.2 4.1 1.5 0.1 setosa
5.5 4.2 1.4 0.2 setosa
4.9 3.1 1.5 0.2 setosa
5.0 3.2 1.2 0.2 setosa
5.5 3.5 1.3 0.2 setosa
4.9 3.6 1.4 0.1 setosa
4.4 3.0 1.3 0.2 setosa
5.1 3.4 1.5 0.2 setosa
5.0 3.5 1.3 0.3 setosa
4.5 2.3 1.3 0.3 setosa
4.4 3.2 1.3 0.2 setosa
5.0 3.5 1.6 0.6 setosa
5.1 3.8 1.9 0.4 setosa
4.8 3.0 1.4 0.3 setosa
5.1 3.8 1.6 0.2 setosa
4.6 3.2 1.4 0.2 setosa
5.3 3.7 1.5 0.2 setosa
5.0 3.3 1.4 0.2 setosa
7.0 3.2 4.7 1.4 versicolor
6.4 3.2 4.5 1.5 versicolor
6.9 3.1 4.9 1.5 versicolor
5.5 2.3 4.0 1.3 versicolor
6.5 2.8 4.6 1.5 versicolor
5.7 2.8 4.5 1.3 versicolor
6.3 3.3 4.7 1.6 versicolor
4.9 2.4 3.3 1.0 versicolor
6.6 2.9 4.6 1.3 versicolor
5.2 2.7 3.9 1.4 versicolor
5.0 2.0 3.5 1.0 versicolor
5.9 3.0 4.2 1.5 versicolor
6.0 2.2 4.0 1.0 versicolor
6.1 2.9 4.7 1.4 versicolor
5.6 2.9 3.6 1.3 versicolor
6.7 3.1 4.4 1.4 versicolor
5.6 3.0 4.5 1.5 versicolor
5.8 2.7 4.1 1.0 versicolor
6.2 2.2 4.5 1.5 versicolor
5.6 2.5 3.9 1.1 versicolor
5.9 3.2 4.8 1.8 versicolor
6.1 2.8 4.0 1.3 versicolor
6.3 2.5 4.9 1.5 versicolor
6.1 2.8 4.7 1.2 versicolor
6.4 2.9 4.3 1.3 versicolor
6.6 3.0 4.4 1.4 versicolor
6.8 2.8 4.8 1.4 versicolor
6.7 3.0 5.0 1.7 versicolor
6.0 2.9 4.5 1.5 versicolor
5.7 2.6 3.5 1.0 versicolor
5.5 2.4 3.8 1.1 versicolor
5.5 2.4 3.7 1.0 versicolor
5.8 2.7 3.9 1.2 versicolor
6.0 2.7 5.1 1.6 versicolor
5.4 3.0 4.5 1.5 versicolor
6.0 3.4 4.5 1.6 versicolor
6.7 3.1 4.7 1.5 versicolor
6.3 2.3 4.4 1.3 versicolor
5.6 3.0 4.1 1.3 versicolor
5.5 2.5 4.0 1.3 versicolor
5.5 2.6 4.4 1.2 versicolor
6.1 3.0 4.6 1.4 versicolor
5.8 2.6 4.0 1.2 versicolor
5.0 2.3 3.3 1.0 versicolor
5.6 2.7 4.2 1.3 versicolor
5.7 3.0 4.2 1.2 versicolor
5.7 2.9 4.2 1.3 versicolor
6.2 2.9 4.3 1.3 versicolor
5.1 2.5 3.0 1.1 versicolor
5.7 2.8 4.1 1.3 versicolor
6.3 3.3 6.0 2.5 virginica
5.8 2.7 5.1 1.9 virginica
7.1 3.0 5.9 2.1 virginica
6.3 2.9 5.6 1.8 virginica
6.5 3.0 5.8 2.2 virginica
7.6 3.0 6.6 2.1 virginica
4.9 2.5 4.5 1.7 virginica
7.3 2.9 6.3 1.8 virginica
6.7 2.5 5.8 1.8 virginica
7.2 3.6 6.1 2.5 virginica
6.5 3.2 5.1 2.0 virginica
6.4 2.7 5.3 1.9 virginica
6.8 3.0 5.5 2.1 virginica
5.7 2.5 5.0 2.0 virginica
5.8 2.8 5.1 2.4 virginica
6.4 3.2 5.3 2.3 virginica
6.5 3.0 5.5 1.8 virginica
7.7 3.8 6.7 2.2 virginica
7.7 2.6 6.9 2.3 virginica
6.0 2.2 5.0 1.5 virginica
6.9 3.2 5.7 2.3 virginica
5.6 2.8 4.9 2.0 virginica
7.7 2.8 6.7 2.0 virginica
6.3 2.7 4.9 1.8 virginica
6.7 3.3 5.7 2.1 virginica
7.2 3.2 6.0 1.8 virginica
6.2 2.8 4.8 1.8 virginica
6.1 3.0 4.9 1.8 virginica
6.4 2.8 5.6 2.1 virginica
7.2 3.0 5.8 1.6 virginica
7.4 2.8 6.1 1.9 virginica
7.9 3.8 6.4 2.0 virginica
6.4 2.8 5.6 2.2 virginica
6.3 2.8 5.1 1.5 virginica
6.1 2.6 5.6 1.4 virginica
7.7 3.0 6.1 2.3 virginica
6.3 3.4 5.6 2.4 virginica
6.4 3.1 5.5 1.8 virginica
6.0 3.0 4.8 1.8 virginica
6.9 3.1 5.4 2.1 virginica
6.7 3.1 5.6 2.4 virginica
6.9 3.1 5.1 2.3 virginica
5.8 2.7 5.1 1.9 virginica
6.8 3.2 5.9 2.3 virginica
6.7 3.3 5.7 2.5 virginica
6.7 3.0 5.2 2.3 virginica
6.3 2.5 5.0 1.9 virginica
6.5 3.0 5.2 2.0 virginica
6.2 3.4 5.4 2.3 virginica
5.9 3.0 5.1 1.8 virginica
<!DOCTYPE html>
<meta charset="utf-8">
<style>
svg {
font: 10px sans-serif;
padding: 10px;
}
.axis,
.frame {
shape-rendering: crispEdges;
}
.axis line {
stroke: #ddd;
}
.axis path {
display: none;
}
.cell text {
font-weight: bold;
text-transform: capitalize;
}
.frame {
fill: none;
stroke: #aaa;
}
circle {
fill-opacity: .7;
}
circle.hidden {
fill: #ccc !important;
}
.extent {
fill: #000;
fill-opacity: .125;
stroke: #fff;
}
</style>
<body>
<script src="//d3js.org/d3.v3.min.js"></script>
<script>
var width = 960,
size = 230,
padding = 20;
var x = d3.scale.linear()
.range([padding / 2, size - padding / 2]);
var y = d3.scale.linear()
.range([size - padding / 2, padding / 2]);
var xAxis = d3.svg.axis()
.scale(x)
.orient("bottom")
.ticks(6);
var yAxis = d3.svg.axis()
.scale(y)
.orient("left")
.ticks(6);
var color = d3.scale.category10();
d3.csv("flowers.csv", function(error, data) {
if (error) throw error;
var domainByTrait = {},
traits = d3.keys(data[0]).filter(function(d) { return d !== "species"; }),
n = traits.length;
traits.forEach(function(trait) {
domainByTrait[trait] = d3.extent(data, function(d) { return d[trait]; });
});
xAxis.tickSize(size * n);
yAxis.tickSize(-size * n);
var brush = d3.svg.brush()
.x(x)
.y(y)
.on("brushstart", brushstart)
.on("brush", brushmove)
.on("brushend", brushend);
var svg = d3.select("body").append("svg")
.attr("width", size * n + padding)
.attr("height", size * n + padding)
.append("g")
.attr("transform", "translate(" + padding + "," + padding / 2 + ")");
svg.selectAll(".x.axis")
.data(traits)
.enter().append("g")
.attr("class", "x axis")
.attr("transform", function(d, i) { return "translate(" + (n - i - 1) * size + ",0)"; })
.each(function(d) { x.domain(domainByTrait[d]); d3.select(this).call(xAxis); });
svg.selectAll(".y.axis")
.data(traits)
.enter().append("g")
.attr("class", "y axis")
.attr("transform", function(d, i) { return "translate(0," + i * size + ")"; })
.each(function(d) { y.domain(domainByTrait[d]); d3.select(this).call(yAxis); });
var cell = svg.selectAll(".cell")
.data(cross(traits, traits))
.enter().append("g")
.attr("class", "cell")
.attr("transform", function(d) { return "translate(" + (n - d.i - 1) * size + "," + d.j * size + ")"; })
.each(plot);
// Titles for the diagonal.
cell.filter(function(d) { return d.i === d.j; }).append("text")
.attr("x", padding)
.attr("y", padding)
.attr("dy", ".71em")
.text(function(d) { return d.x; });
cell.call(brush);
function plot(p) {
var cell = d3.select(this);
x.domain(domainByTrait[p.x]);
y.domain(domainByTrait[p.y]);
cell.append("rect")
.attr("class", "frame")
.attr("x", padding / 2)
.attr("y", padding / 2)
.attr("width", size - padding)
.attr("height", size - padding);
cell.selectAll("circle")
.data(data)
.enter().append("circle")
.attr("cx", function(d) { return x(d[p.x]); })
.attr("cy", function(d) { return y(d[p.y]); })
.attr("r", 4)
.style("fill", function(d) { return color(d.species); });
}
var brushCell;
// Clear the previously-active brush, if any.
function brushstart(p) {
if (brushCell !== this) {
d3.select(brushCell).call(brush.clear());
x.domain(domainByTrait[p.x]);
y.domain(domainByTrait[p.y]);
brushCell = this;
}
}
// Highlight the selected circles.
function brushmove(p) {
var e = brush.extent();
svg.selectAll("circle").classed("hidden", function(d) {
return e[0][0] > d[p.x] || d[p.x] > e[1][0]
|| e[0][1] > d[p.y] || d[p.y] > e[1][1];
});
}
// If the brush is empty, select all circles.
function brushend() {
if (brush.empty()) svg.selectAll(".hidden").classed("hidden", false);
}
});
function cross(a, b) {
var c = [], n = a.length, m = b.length, i, j;
for (i = -1; ++i < n;) for (j = -1; ++j < m;) c.push({x: a[i], i: i, y: b[j], j: j});
return c;
}
</script>
@fdeheeger

This comment has been minimized.

Show comment
Hide comment
@fdeheeger

fdeheeger Oct 31, 2013

duplicate in SO: http://stackoverflow.com/questions/19708380/d3-js-scatter-matrix-with-brushing-scale-error

I try to reuse this example of 'scatter matrix with brushing'. The code seems to be pretty reusable but there is some scale problems...
Scales seems to be somehow hard coded or so: i change the csv by adding 10 to 75% of the first column values, and the x / y scales are not directly updated. To visualize the problem, see the fork of the gist: http://bl.ocks.org/fdeheeger/7249196

I cannot figure out where/how the scale is computed or updated in the javascript code.

I do not want to take your time, just point you this problem in case you are not aware of.

duplicate in SO: http://stackoverflow.com/questions/19708380/d3-js-scatter-matrix-with-brushing-scale-error

I try to reuse this example of 'scatter matrix with brushing'. The code seems to be pretty reusable but there is some scale problems...
Scales seems to be somehow hard coded or so: i change the csv by adding 10 to 75% of the first column values, and the x / y scales are not directly updated. To visualize the problem, see the fork of the gist: http://bl.ocks.org/fdeheeger/7249196

I cannot figure out where/how the scale is computed or updated in the javascript code.

I do not want to take your time, just point you this problem in case you are not aware of.

@fdeheeger

This comment has been minimized.

Show comment
Hide comment
@fdeheeger

fdeheeger Oct 31, 2013

Answer in SO... thanks to Lars Kotthoff

L75 have to be changed into:
domainByTrait[trait] = d3.extent(data, function(d) { return +d[trait]; });

Regards.

Answer in SO... thanks to Lars Kotthoff

L75 have to be changed into:
domainByTrait[trait] = d3.extent(data, function(d) { return +d[trait]; });

Regards.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment