Created
September 29, 2014 05:07
-
-
Save mieko/3c17c41b8be9f2598c12 to your computer and use it in GitHub Desktop.
Marching Squares in C++
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include "marching-squares.hh" | |
#include "point.hh" | |
#include "polygon.hh" | |
#include "douglas-peucker.hh" | |
#include <ps/canvas/canvas.hh> | |
#include <cstring> | |
#include <vector> | |
namespace Ps { | |
/* Implementation based on: "Better Know An Algorithm 1: Marching Squares" */ | |
/* "http://devblog.phillipspiess.com/2010/02/23/" | |
* "better-know-an-algorithm-1-marching-squares/" | |
*/ | |
namespace { | |
typedef char Direction; | |
/* We build these as char[4]'s, but can then compare them as ints */ | |
union Key { | |
char c[4]; | |
int i; | |
Key(); | |
Key(const char* s); | |
}; | |
inline Key::Key() | |
: i(0) | |
{ | |
; | |
} | |
inline Key::Key(const char* s) | |
: i(0) | |
{ | |
assert(std::strlen(s) >= sizeof(c)); | |
std::memcpy(c, s, sizeof(c)); | |
} | |
struct Transition { | |
Transition() = default; | |
/* implicit */ | |
Transition(const char* desc); | |
Key key = Key(); | |
Direction dir = 'X'; | |
}; | |
Transition::Transition(const char* desc) | |
: key(desc), dir('X') | |
{ | |
assert(desc != nullptr && strlen(desc) == 6); | |
dir = desc[6]; | |
} | |
static const Transition transitions[] = { | |
"0000-R", "1100-R", "0011-L", "1110-R", | |
"0100-R", "1000-U", "1011-U", "1001-U", | |
"0101-D", "1010-U", "0111-L", "0110-L", | |
"0001-D", "0010-L", "1101-D", "1111-R" | |
}; | |
} | |
struct MarchingSquares::Impl | |
{ | |
Impl(MarchingSquares* inst); | |
public: | |
MarchingSquares* inst = nullptr; | |
size_t w = 0; | |
size_t h = 0; | |
/* Full knowledge of vector<bool> specialization */ | |
std::vector<bool> data; | |
}; | |
MarchingSquares::Impl::Impl(MarchingSquares* inst) | |
: inst(inst) | |
{ | |
; | |
} | |
MarchingSquares::MarchingSquares(Canvas* canvas) | |
: impl(new Impl(this)) | |
{ | |
impl->w = canvas->size().w(); | |
impl->h = canvas->size().h(); | |
impl->data.reserve(impl->w * impl->h); | |
for (size_t y = 0; y != impl->h; ++y) { | |
for (size_t x = 0; x != impl->w; ++x) { | |
Canvas::Pixel p = canvas->pixel_at(Point(x, y)); | |
impl->data[y * impl->w + x] = ((p & 0xff000000) >> 24) > 0; | |
} | |
} | |
} | |
MarchingSquares::~MarchingSquares() | |
{ | |
delete impl; | |
} | |
Polygon MarchingSquares::extract_simple(Float epsilon) | |
{ | |
Polygon poly; | |
size_t x = 0; | |
size_t y = 0; | |
/* Find first edge */ | |
for (int i = 0; i != impl->data.size(); ++i) { | |
if (impl->data[i]) { | |
y = i / impl->w; | |
x = i % impl->w; | |
break; | |
} | |
} | |
/* If we got to the bottom-right, we're done: no result */ | |
if (x == impl->w && y == impl->h) { | |
return Polygon(); | |
} | |
/* save terminal condition */ | |
size_t fx = x, fy = y; | |
Transition window; | |
char last_dir = 'X'; | |
do { | |
/* Lets us treat image boundary as 0. */ | |
#define VIEW(ox, oy) ((ox < 0 || oy < 0 || ox == impl->w || oy == impl->h) \ | |
? '0' : impl->data[(oy) * impl->w + (ox)]) | |
window.key.c[0] = VIEW(x-1, y-1); | |
window.key.c[1] = VIEW( x, y-1); | |
window.key.c[2] = VIEW(x-1, y); | |
window.key.c[3] = VIEW( x, y); | |
#undef VIEW | |
/* Based on the window we're looking at, find the next step */ | |
Direction dir = 'X'; | |
for (auto& st: transitions) { | |
if (window.key.i == st.key.i) { | |
dir = st.dir; | |
break; | |
} | |
} | |
/* These two handle special cases that can cause an infinite loop */ | |
if (window.key.i == transitions[11].key.i) { | |
assert(dir == 'L'); | |
dir = (last_dir == 'U' ? 'L' : 'R'); | |
} else if (window.key.i == transitions[7].key.i) { | |
assert(dir == 'U'); | |
dir = (last_dir == 'R' ? 'U' : 'D'); | |
} | |
assert(dir != 'X'); | |
if (dir != last_dir) { | |
poly.push_back(Point(x, y)); | |
} | |
switch (dir) { | |
case 'U': --y; break; | |
case 'D': ++y; break; | |
case 'L': --x; break; | |
case 'R': ++x; break; | |
default: | |
assert(false); | |
} | |
last_dir = dir; | |
} while (! (y == fy && x == fx)); | |
assert(epsilon >= 0.0f); | |
if (epsilon > 0.0f) { | |
return DouglasPeucker::simplify(poly, epsilon); | |
} else { | |
return poly; | |
} | |
} | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#ifndef PS_GEOM_MARCHING_SQUARES_HH | |
#define PS_GEOM_MARCHING_SQUARES_HH | |
namespace Ps { | |
class Canvas; | |
class Polygon; | |
class Mesh2d; | |
class MarchingSquares | |
{ | |
public: | |
MarchingSquares(Canvas* surface); | |
virtual ~MarchingSquares(); | |
/* Extracts a polygon, then simplifies to simplification_epsilon */ | |
Polygon extract_simple(Float simplification_epsilon = PS_PIXEL_EPSILON); | |
private: | |
struct Impl; | |
Impl* impl; | |
}; | |
} | |
#endif |
Hi, Dan.
It removes points that are nearly-colinear on each edge of a polygon. The epsilon is the “tolerance”. Basically noise reduction on extraneous points.
I obviously had a C++ implementation at one point, but I see I have a old Ruby gist with the ugly “textbook” implementation: https://gist.github.com/mieko/7c1f5a3b51423c4322e2
I’ll see if I can dig up the C++ version later.
Oh, I could see how that could help clean up the contours...
Thanks for the reply. If you ever do post that code, I'll gladly take a
look at it. Thinking about using your code for a project.
- dan
…On Wed, Sep 4, 2019 at 8:14 AM Mike Owens ***@***.***> wrote:
Hi, Daniel.
It removes points that are nearly-colinear on each edge of a polygon. The
epsilon is the “tolerance”.
I obviously had a C++ implementation at one point, but I see I have a old
Ruby gist with the ugly “textbook” implementation:
https://gist.github.com/mieko/7c1f5a3b51423c4322e2
I’ll see if I can dig up the C++ version later.
—
You are receiving this because you commented.
Reply to this email directly, view it on GitHub
<https://gist.github.com/3c17c41b8be9f2598c12?email_source=notifications&email_token=AAED27M2EIO6LQZA2LMKW4DQH6YCZA5CNFSM4ITRC5V2YY3PNVWWK3TUL52HS4DFVNDWS43UINXW23LFNZ2KUY3PNVWWK3TUL5UWJTQAFYDO2#gistcomment-3016429>,
or mute the thread
<https://github.com/notifications/unsubscribe-auth/AAED27MKV4ZJFWQ3WMSW7DTQH6YCZANCNFSM4ITRC5VQ>
.
I've resurrected the C++ implementation out of a really-old archive, available here:
https://gist.github.com/mieko/0275f2f4a3b18388ed5131b3364179fb
Not drop-in ready (uses references geometry types undefined), but the missing parts are trivial.
-M
Thank you, sir. I'll check it out.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
What does DouglasPeucker::simplify(poly, epsilon); do?