Code to analyze the security of Diffie-Hellman with the Tamarin Solver
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
theory Sean | |
begin | |
builtins: diffie-hellman | |
section{* DH *} | |
/* Generate ephemeral keypair */ | |
rule generate_ephemeral: | |
[ Fr(~secretk)] | |
--> | |
[ Keys( ~secretk, 'g'^~secretk ) ] | |
/* protocol */ | |
rule Init_client: | |
[ Keys(~secretk, 'g'^~secretk) ] | |
--> | |
[ Keys(~secretk, 'g'^~secretk), Out( 'g'^~secretk ) ] | |
rule Init_Finish_server: | |
let pubkey_other = 'g'^r | |
in | |
[ Keys(~secretk, 'g'^~secretk), In( pubkey_other ) ] | |
--[ Session_created(pubkey_other^~secretk) ]-> | |
[ Session(pubkey_other^~secretk), Out( 'g'^~secretk ) ] | |
rule Finish_client: | |
let pubkey_other = 'g'^r | |
in | |
[ Keys(~secretk, 'g'^~secretk), In( pubkey_other ) ] | |
--[ Session_created(pubkey_other^~secretk) ]-> | |
[ Session(pubkey_other^~secretk) ] | |
/* Key Reveals */ | |
rule key_reveal: | |
[ Keys(~secretk, 'g'^~secretk) ]--[ Key_reveal(~secretk) ]-> [ Out(~secretk) ] | |
rule Session_reveal: | |
[ Session(skey) ] --[ Reveal_sessionKey(skey)]-> [ Out(skey)] | |
// lemma | |
lemma session_key: | |
"(All #i1 skey . | |
( | |
Session_created(skey) @ i1 | |
& | |
not ( (Ex A #ia . Key_reveal( A ) @ ia ) | |
| (Ex B #ib . Reveal_sessionKey( B ) @ ib ) | |
) | |
) | |
==> not (Ex #i2. K( skey ) @ i2 ) | |
)" | |
end |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment