This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
import numpy as np | |
import six | |
import chainer | |
from chainer import computational_graph as c | |
from chainer import cuda | |
import chainer.functions as F | |
from chainer import optimizers | |
inputlayersize = 400 | |
hiddenlayersize = 25 | |
numlabel = 10 | |
# Data files are available from the following URLs. | |
# * https://dl.dropboxusercontent.com/u/123796/gist/b553004a7ca76310e11c/data/ex4data1_X.csv.gz | |
# * https://dl.dropboxusercontent.com/u/123796/gist/b553004a7ca76310e11c/data/ex4data1_y.csv | |
# | |
# They are converted from ex4data1.mat using Octave as below. | |
# | |
# > load('ex4data1.mat'); | |
# > csvwrite("ex4data1_X.csv", X); | |
# > csvwrite("ex4data1_y.csv", y); | |
x = np.loadtxt("ex4data1_X.csv", delimiter=",", dtype=np.float32) | |
y = np.loadtxt("ex4data1_y.csv", delimiter=",", dtype=np.int_) | |
y = np.vectorize(lambda x: 0 if x == 10 else x, otypes = [np.int_])(y) | |
# Prepare multi-layer perceptron model | |
model = chainer.FunctionSet(l1=F.Linear(inputlayersize, hiddenlayersize), | |
l2=F.Linear(hiddenlayersize, numlabel)) | |
# Neural net architecture | |
def forward(x): | |
x = chainer.Variable(x) | |
return F.sigmoid(model.l2(F.sigmoid(model.l1(x)))) | |
def cost(x, y): | |
o = forward(x) | |
y2 = np.zeros([len(y), numlabel], np.float32) | |
for i in xrange(y.shape[0]): | |
y2[i, y[i]] = 1 | |
c = F.sum(F.sum(- y2 * F.log(o) - (1 - y2) * F.log(1 - o))) / len(y) | |
return c | |
def predict(x): | |
return forward(x).data.argmax(axis=1) | |
# Setup optimizer | |
optimizer = optimizers.SGD() | |
optimizer.setup(model.collect_parameters()) | |
for i in xrange(1000): | |
o = cost(x, y) | |
print o.data | |
optimizer.zero_grads() | |
o.backward() | |
optimizer.update() | |
p = predict(x) | |
print("precision (training data): %f" % (sum(1.0 for i in xrange(y.shape[0]) if p[i] == y[i]) / y.shape[0])) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment