{{ message }}

Instantly share code, notes, and snippets.

# Masahiro Sakai msakai

View codon-table-grouped.csv
aminoacid codon A GCA A GCC A GCG A GCT C TGC C TGT D GAC D GAT E GAA
Created Apr 6, 2021
 {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE ScopedTypeVariables #-} module ProximalGradientMethod where import Data.Foldable import Data.Reflection (Reifies) import Numeric.AD import Numeric.AD.Mode.Reverse import Numeric.AD.Internal.Reverse (Tape)
Created Mar 8, 2021
View RungeKutta.hs
 {-# LANGUAGE FlexibleContexts #-} import Control.Exception import qualified Data.Vector.Generic as VG import Numeric.LinearAlgebra eulerMethod :: Fractional a => (a -> a -> a) -> a -> a -> a -> a eulerMethod f h t y = y + h * f t y -- https://ja.wikipedia.org/wiki/%E3%83%AB%E3%83%B3%E3%82%B2%EF%BC%9D%E3%82%AF%E3%83%83%E3%82%BF%E6%B3%95
Created Mar 3, 2021
View ChineseRemainderTheorem.hs
 {-# LANGUAGE BangPatterns #-} import Control.Exception -- crt [(3,2), (5,3), (7,2)] == 23 crt :: [(Integer, Integer)] -> Integer crt xs = assert (all (\(n, a) -> ret `mod` n == a) xs) \$ ret where ret = foldl add 0 [m' `mul` a `mul` t | (n, a) <- xs, let m' = m `div` n, let (d, t, _) = exgcd m' (- n), assert (d == 1) True] m = product [n | (n, a) <- xs]
Created Mar 2, 2021
View Bezout.hs
 {-# LANGUAGE BangPatterns, ScopedTypeVariables #-} import Test.QuickCheck import qualified Test.QuickCheck.Monadic as QM import qualified Z3.Monad as Z3 {- a x + b y = n d where d = gcd(a,b) の解は必ず (x, y) = (n x0 + b/d k, n y0 - a/d k) の形で書けることを示したい。
Created Feb 13, 2021
View keybase.md

### Keybase proof

I hereby claim:

• I am msakai on github.
• I am msakai (https://keybase.io/msakai) on keybase.
• I have a public key ASDrKkF7omBH58cR0sbmFTS_5TDhq_tjLEVi0wWi2IFfNgo

To claim this, I am signing this object:

Last active Feb 12, 2021
View Tomega.agda
 {- https://twitter.com/andrejbauer/status/1358357606536986624 Today's exercise in constructive math: characterize the maximal elements of Plotkin's domain T^ω := {(A,B) ∈ P(ℕ) × P(ℕ) | A ∩ B = ∅}, ordered by pairwise ⊆. Coq definitions are in the picture. Hint: they are *not* just those that satisfy A ∪ B = ℕ. -} module Tomega where
Created Dec 13, 2020
View OptimalTransport.hs
 {-# OPTIONS_GHC -Wall #-} module OptimalTransport (computeOptimalTransport) where import qualified Data.Vector.Generic as VG import Numeric.LinearAlgebra ((<.>), (#>), (<#), (><)) import qualified Numeric.LinearAlgebra as LA -- | Solve entropy regularized optimal transport problem: -- -- \[
Last active Aug 4, 2020