Skip to content

Instantly share code, notes, and snippets.

@naomiajacobs
Last active January 1, 2021 16:45
Show Gist options
  • Save naomiajacobs/1e9de466ead8f362394cdfd581ec74fd to your computer and use it in GitHub Desktop.
Save naomiajacobs/1e9de466ead8f362394cdfd581ec74fd to your computer and use it in GitHub Desktop.
bnt162b2 Vaccine Codon Optimization
from dnachisel import *
# Subbed in `CCTCCT` for `AAAGTT` to account for proline substitution
virus = 'ATGTTTGTTTTTCTTGTTTTATTGCCACTAGTCTCTAGTCAGTGTGTTAATCTTACAACCAGAACTCAATTACCCCCTGCATACACTAATTCTTTCACACGTGGTGTTTATTACCCTGACAAAGTTTTCAGATCCTCAGTTTTACATTCAACTCAGGACTTGTTCTTACCTTTCTTTTCCAATGTTACTTGGTTCCATGCTATACATGTCTCTGGGACCAATGGTACTAAGAGGTTTGATAACCCTGTCCTACCATTTAATGATGGTGTTTATTTTGCTTCCACTGAGAAGTCTAACATAATAAGAGGCTGGATTTTTGGTACTACTTTAGATTCGAAGACCCAGTCCCTACTTATTGTTAATAACGCTACTAATGTTGTTATTAAAGTCTGTGAATTTCAATTTTGTAATGATCCATTTTTGGGTGTTTATTACCACAAAAACAACAAAAGTTGGATGGAAAGTGAGTTCAGAGTTTATTCTAGTGCGAATAATTGCACTTTTGAATATGTCTCTCAGCCTTTTCTTATGGACCTTGAAGGAAAACAGGGTAATTTCAAAAATCTTAGGGAATTTGTGTTTAAGAATATTGATGGTTATTTTAAAATATATTCTAAGCACACGCCTATTAATTTAGTGCGTGATCTCCCTCAGGGTTTTTCGGCTTTAGAACCATTGGTAGATTTGCCAATAGGTATTAACATCACTAGGTTTCAAACTTTACTTGCTTTACATAGAAGTTATTTGACTCCTGGTGATTCTTCTTCAGGTTGGACAGCTGGTGCTGCAGCTTATTATGTGGGTTATCTTCAACCTAGGACTTTTCTATTAAAATATAATGAAAATGGAACCATTACAGATGCTGTAGACTGTGCACTTGACCCTCTCTCAGAAACAAAGTGTACGTTGAAATCCTTCACTGTAGAAAAAGGAATCTATCAAACTTCTAACTTTAGAGTCCAACCAACAGAATCTATTGTTAGATTTCCTAATATTACAAACTTGTGCCCTTTTGGTGAAGTTTTTAACGCCACCAGATTTGCATCTGTTTATGCTTGGAACAGGAAGAGAATCAGCAACTGTGTTGCTGATTATTCTGTCCTATATAATTCCGCATCATTTTCCACTTTTAAGTGTTATGGAGTGTCTCCTACTAAATTAAATGATCTCTGCTTTACTAATGTCTATGCAGATTCATTTGTAATTAGAGGTGATGAAGTCAGACAAATCGCTCCAGGGCAAACTGGAAAGATTGCTGATTATAATTATAAATTACCAGATGATTTTACAGGCTGCGTTATAGCTTGGAATTCTAACAATCTTGATTCTAAGGTTGGTGGTAATTATAATTACCTGTATAGATTGTTTAGGAAGTCTAATCTCAAACCTTTTGAGAGAGATATTTCAACTGAAATCTATCAGGCCGGTAGCACACCTTGTAATGGTGTTGAAGGTTTTAATTGTTACTTTCCTTTACAATCATATGGTTTCCAACCCACTAATGGTGTTGGTTACCAACCATACAGAGTAGTAGTACTTTCTTTTGAACTTCTACATGCACCAGCAACTGTTTGTGGACCTAAAAAGTCTACTAATTTGGTTAAAAACAAATGTGTCAATTTCAACTTCAATGGTTTAACAGGCACAGGTGTTCTTACTGAGTCTAACAAAAAGTTTCTGCCTTTCCAACAATTTGGCAGAGACATTGCTGACACTACTGATGCTGTCCGTGATCCACAGACACTTGAGATTCTTGACATTACACCATGTTCTTTTGGTGGTGTCAGTGTTATAACACCAGGAACAAATACTTCTAACCAGGTTGCTGTTCTTTATCAGGATGTTAACTGCACAGAAGTCCCTGTTGCTATTCATGCAGATCAACTTACTCCTACTTGGCGTGTTTATTCTACAGGTTCTAATGTTTTTCAAACACGTGCAGGCTGTTTAATAGGGGCTGAACATGTCAACAACTCATATGAGTGTGACATACCCATTGGTGCAGGTATATGCGCTAGTTATCAGACTCAGACTAATTCTCCTCGGCGGGCACGTAGTGTAGCTAGTCAATCCATCATTGCCTACACTATGTCACTTGGTGCAGAAAATTCAGTTGCTTACTCTAATAACTCTATTGCCATACCCACAAATTTTACTATTAGTGTTACCACAGAAATTCTACCAGTGTCTATGACCAAGACATCAGTAGATTGTACAATGTACATTTGTGGTGATTCAACTGAATGCAGCAATCTTTTGTTGCAATATGGCAGTTTTTGTACACAATTAAACCGTGCTTTAACTGGAATAGCTGTTGAACAAGACAAAAACACCCAAGAAGTTTTTGCACAAGTCAAACAAATTTACAAAACACCACCAATTAAAGATTTTGGTGGTTTTAATTTTTCACAAATATTACCAGATCCATCAAAACCAAGCAAGAGGTCATTTATTGAAGATCTACTTTTCAACAAAGTGACACTTGCAGATGCTGGCTTCATCAAACAATATGGTGATTGCCTTGGTGATATTGCTGCTAGAGACCTCATTTGTGCACAAAAGTTTAACGGCCTTACTGTTTTGCCACCTTTGCTCACAGATGAAATGATTGCTCAATACACTTCTGCACTGTTAGCGGGTACAATCACTTCTGGTTGGACCTTTGGTGCAGGTGCTGCATTACAAATACCATTTGCTATGCAAATGGCTTATAGGTTTAATGGTATTGGAGTTACACAGAATGTTCTCTATGAGAACCAAAAATTGATTGCCAACCAATTTAATAGTGCTATTGGCAAAATTCAAGACTCACTTTCTTCCACAGCAAGTGCACTTGGAAAACTTCAAGATGTGGTCAACCAAAATGCACAAGCTTTAAACACGCTTGTTAAACAACTTAGCTCCAATTTTGGTGCAATTTCAAGTGTTTTAAATGATATCCTTTCACGTCTTGACCCTCCTGAGGCTGAAGTGCAAATTGATAGGTTGATCACAGGCAGACTTCAAAGTTTGCAGACATATGTGACTCAACAATTAATTAGAGCTGCAGAAATCAGAGCTTCTGCTAATCTTGCTGCTACTAAAATGTCAGAGTGTGTACTTGGACAATCAAAAAGAGTTGATTTTTGTGGAAAGGGCTATCATCTTATGTCCTTCCCTCAGTCAGCACCTCATGGTGTAGTCTTCTTGCATGTGACTTATGTCCCTGCACAAGAAAAGAACTTCACAACTGCTCCTGCCATTTGTCATGATGGAAAAGCACACTTTCCTCGTGAAGGTGTCTTTGTTTCAAATGGCACACACTGGTTTGTAACACAAAGGAATTTTTATGAACCACAAATCATTACTACAGACAACACATTTGTGTCTGGTAACTGTGATGTTGTAATAGGAATTGTCAACAACACAGTTTATGATCCTTTGCAACCTGAATTAGACTCATTCAAGGAGGAGTTAGATAAATATTTTAAGAATCATACATCACCAGATGTTGATTTAGGTGACATCTCTGGCATTAATGCTTCAGTTGTAAACATTCAAAAAGAAATTGACCGCCTCAATGAGGTTGCCAAGAATTTAAATGAATCTCTCATCGATCTCCAAGAACTTGGAAAGTATGAGCAGTATATAAAATGGCCATGGTACATTTGGCTAGGTTTTATAGCTGGCTTGATTGCCATAGTAATGGTGACAATTATGCTTTGCTGTATGACCAGTTGCTGTAGTTGTCTCAAGGGCTGTTGTTCTTGTGGATCCTGCTGCAAATTTGATGAAGACGACTCTGAGCCAGTGCTCAAAGGAGTCAAATTACATTACACATAA'
vaccine = 'ATGTTCGTGTTCCTGGTGCTGCTGCCTCTGGTGTCCAGCCAGTGTGTGAACCTGACCACCAGAACACAGCTGCCTCCAGCCTACACCAACAGCTTTACCAGAGGCGTGTACTACCCCGACAAGGTGTTCAGATCCAGCGTGCTGCACTCTACCCAGGACCTGTTCCTGCCTTTCTTCAGCAACGTGACCTGGTTCCACGCCATCCACGTGTCCGGCACCAATGGCACCAAGAGATTCGACAACCCCGTGCTGCCCTTCAACGACGGGGTGTACTTTGCCAGCACCGAGAAGTCCAACATCATCAGAGGCTGGATCTTCGGCACCACACTGGACAGCAAGACCCAGAGCCTGCTGATCGTGAACAACGCCACCAACGTGGTCATCAAAGTGTGCGAGTTCCAGTTCTGCAACGACCCCTTCCTGGGCGTCTACTACCACAAGAACAACAAGAGCTGGATGGAAAGCGAGTTCCGGGTGTACAGCAGCGCCAACAACTGCACCTTCGAGTACGTGTCCCAGCCTTTCCTGATGGACCTGGAAGGCAAGCAGGGCAACTTCAAGAACCTGCGCGAGTTCGTGTTTAAGAACATCGACGGCTACTTCAAGATCTACAGCAAGCACACCCCTATCAACCTCGTGCGGGATCTGCCTCAGGGCTTCTCTGCTCTGGAACCCCTGGTGGATCTGCCCATCGGCATCAACATCACCCGGTTTCAGACACTGCTGGCCCTGCACAGAAGCTACCTGACACCTGGCGATAGCAGCAGCGGATGGACAGCTGGTGCCGCCGCTTACTATGTGGGCTACCTGCAGCCTAGAACCTTCCTGCTGAAGTACAACGAGAACGGCACCATCACCGACGCCGTGGATTGTGCTCTGGATCCTCTGAGCGAGACAAAGTGCACCCTGAAGTCCTTCACCGTGGAAAAGGGCATCTACCAGACCAGCAACTTCCGGGTGCAGCCCACCGAATCCATCGTGCGGTTCCCCAATATCACCAATCTGTGCCCCTTCGGCGAGGTGTTCAATGCCACCAGATTCGCCTCTGTGTACGCCTGGAACCGGAAGCGGATCAGCAATTGCGTGGCCGACTACTCCGTGCTGTACAACTCCGCCAGCTTCAGCACCTTCAAGTGCTACGGCGTGTCCCCTACCAAGCTGAACGACCTGTGCTTCACAAACGTGTACGCCGACAGCTTCGTGATCCGGGGAGATGAAGTGCGGCAGATTGCCCCTGGACAGACAGGCAAGATCGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGTGTGATTGCCTGGAACAGCAACAACCTGGACTCCAAAGTCGGCGGCAACTACAATTACCTGTACCGGCTGTTCCGGAAGTCCAATCTGAAGCCCTTCGAGCGGGACATCTCCACCGAGATCTATCAGGCCGGCAGCACCCCTTGTAACGGCGTGGAAGGCTTCAACTGCTACTTCCCACTGCAGTCCTACGGCTTTCAGCCCACAAATGGCGTGGGCTATCAGCCCTACAGAGTGGTGGTGCTGAGCTTCGAACTGCTGCATGCCCCTGCCACAGTGTGCGGCCCTAAGAAAAGCACCAATCTCGTGAAGAACAAATGCGTGAACTTCAACTTCAACGGCCTGACCGGCACCGGCGTGCTGACAGAGAGCAACAAGAAGTTCCTGCCATTCCAGCAGTTTGGCCGGGATATCGCCGATACCACAGACGCCGTTAGAGATCCCCAGACACTGGAAATCCTGGACATCACCCCTTGCAGCTTCGGCGGAGTGTCTGTGATCACCCCTGGCACCAACACCAGCAATCAGGTGGCAGTGCTGTACCAGGACGTGAACTGTACCGAAGTGCCCGTGGCCATTCACGCCGATCAGCTGACACCTACATGGCGGGTGTACTCCACCGGCAGCAATGTGTTTCAGACCAGAGCCGGCTGTCTGATCGGAGCCGAGCACGTGAACAATAGCTACGAGTGCGACATCCCCATCGGCGCTGGAATCTGCGCCAGCTACCAGACACAGACAAACAGCCCTCGGAGAGCCAGAAGCGTGGCCAGCCAGAGCATCATTGCCTACACAATGTCTCTGGGCGCCGAGAACAGCGTGGCCTACTCCAACAACTCTATCGCTATCCCCACCAACTTCACCATCAGCGTGACCACAGAGATCCTGCCTGTGTCCATGACCAAGACCAGCGTGGACTGCACCATGTACATCTGCGGCGATTCCACCGAGTGCTCCAACCTGCTGCTGCAGTACGGCAGCTTCTGCACCCAGCTGAATAGAGCCCTGACAGGGATCGCCGTGGAACAGGACAAGAACACCCAAGAGGTGTTCGCCCAAGTGAAGCAGATCTACAAGACCCCTCCTATCAAGGACTTCGGCGGCTTCAATTTCAGCCAGATTCTGCCCGATCCTAGCAAGCCCAGCAAGCGGAGCTTCATCGAGGACCTGCTGTTCAACAAAGTGACACTGGCCGACGCCGGCTTCATCAAGCAGTATGGCGATTGTCTGGGCGACATTGCCGCCAGGGATCTGATTTGCGCCCAGAAGTTTAACGGACTGACAGTGCTGCCTCCTCTGCTGACCGATGAGATGATCGCCCAGTACACATCTGCCCTGCTGGCCGGCACAATCACAAGCGGCTGGACATTTGGAGCAGGCGCCGCTCTGCAGATCCCCTTTGCTATGCAGATGGCCTACCGGTTCAACGGCATCGGAGTGACCCAGAATGTGCTGTACGAGAACCAGAAGCTGATCGCCAACCAGTTCAACAGCGCCATCGGCAAGATCCAGGACAGCCTGAGCAGCACAGCAAGCGCCCTGGGAAAGCTGCAGGACGTGGTCAACCAGAATGCCCAGGCACTGAACACCCTGGTCAAGCAGCTGTCCTCCAACTTCGGCGCCATCAGCTCTGTGCTGAACGATATCCTGAGCAGACTGGACCCTCCTGAGGCCGAGGTGCAGATCGACAGACTGATCACAGGCAGACTGCAGAGCCTCCAGACATACGTGACCCAGCAGCTGATCAGAGCCGCCGAGATTAGAGCCTCTGCCAATCTGGCCGCCACCAAGATGTCTGAGTGTGTGCTGGGCCAGAGCAAGAGAGTGGACTTTTGCGGCAAGGGCTACCACCTGATGAGCTTCCCTCAGTCTGCCCCTCACGGCGTGGTGTTTCTGCACGTGACATATGTGCCCGCTCAAGAGAAGAATTTCACCACCGCTCCAGCCATCTGCCACGACGGCAAAGCCCACTTTCCTAGAGAAGGCGTGTTCGTGTCCAACGGCACCCATTGGTTCGTGACACAGCGGAACTTCTACGAGCCCCAGATCATCACCACCGACAACACCTTCGTGTCTGGCAACTGCGACGTCGTGATCGGCATTGTGAACAATACCGTGTACGACCCTCTGCAGCCCGAGCTGGACAGCTTCAAAGAGGAACTGGACAAGTACTTTAAGAACCACACAAGCCCCGACGTGGACCTGGGCGATATCAGCGGAATCAATGCCAGCGTCGTGAACATCCAGAAAGAGATCGACCGGCTGAACGAGGTGGCCAAGAATCTGAACGAGAGCCTGATCGACCTGCAAGAACTGGGGAAGTACGAGCAGTACATCAAGTGGCCCTGGTACATCTGGCTGGGCTTTATCGCCGGACTGATTGCCATCGTGATGGTCACAATCATGCTGTGTTGCATGACCAGCTGCTGTAGCTGCCTGAAGGGCTGTTGTAGCTGTGGCAGCTGCTGCAAGTTCGACGAGGACGATTCTGAGCCCGTGCTGAAGGGCGTGAAACTGCACTACACATGA'
# taken from kazusa
hamster_codons = {u'*': {u'TAA': 0.26, u'TAG': 0.24, u'TGA': 0.5},
u'A': {u'GCA': 0.23, u'GCC': 0.37, u'GCG': 0.07, u'GCT': 0.32},
u'C': {u'TGC': 0.53, u'TGT': 0.47},
u'D': {u'GAC': 0.53, u'GAT': 0.47},
u'E': {u'GAA': 0.41, u'GAG': 0.59},
u'F': {u'TTC': 0.53, u'TTT': 0.47},
u'G': {u'GGA': 0.25, u'GGC': 0.34, u'GGG': 0.21, u'GGT': 0.2},
u'H': {u'CAC': 0.56, u'CAT': 0.44},
u'I': {u'ATA': 0.14, u'ATC': 0.51, u'ATT': 0.35},
u'K': {u'AAA': 0.39, u'AAG': 0.61},
u'L': {u'CTA': 0.08,
u'CTC': 0.19,
u'CTG': 0.39,
u'CTT': 0.13,
u'TTA': 0.06,
u'TTG': 0.14},
u'M': {u'ATG': 1},
u'N': {u'AAC': 0.55, u'AAT': 0.45},
u'P': {u'CCA': 0.29, u'CCC': 0.32, u'CCG': 0.08, u'CCT': 0.31},
u'Q': {u'CAA': 0.24, u'CAG': 0.76},
u'R': {u'AGA': 0.19,
u'AGG': 0.19,
u'CGA': 0.14,
u'CGC': 0.18,
u'CGG': 0.19,
u'CGT': 0.11},
u'S': {u'AGC': 0.22,
u'AGT': 0.15,
u'TCA': 0.14,
u'TCC': 0.22,
u'TCG': 0.05,
u'TCT': 0.22},
u'T': {u'ACA': 0.29, u'ACC': 0.37, u'ACG': 0.08, u'ACT': 0.26},
u'V': {u'GTA': 0.12, u'GTC': 0.24, u'GTG': 0.46, u'GTT': 0.18},
u'W': {u'TGG': 1},
u'Y': {u'TAC': 0.56, u'TAT': 0.44}}
def percent_match(one, two):
num_mismatches = 0
for base1, base2 in zip(one, two):
if base1 != base2:
num_mismatches = num_mismatches + 1
return (1 -float(num_mismatches) / float(len(one))) * 100
def optimize_virus():
problem = DnaOptimizationProblem(
sequence=virus,
constraints=[
EnforceGCContent(mini=0.4, maxi=0.7, window=50),
EnforceTranslation()
],
objectives=[
CodonOptimize(codon_usage_table=hamster_codons, mode="harmonized")
]
)
problem.resolve_constraints()
problem.optimize()
return percent_match(vaccine, problem.sequence)
# 79.51334379905806 over 20 tries
def print_average_match(num_iterations=20):
return sum([optimize_virus() for i in range(num_iterations)])/num_iterations
@pvieito
Copy link

pvieito commented Dec 31, 2020

Same code, with some tweaks and using the last dnachisel version goes up to 90%!

import python_codon_tables
from dnachisel import *

# Subbed in `CCTCCT` for `AAAGTT` to account for proline substitution
virus = 'ATGTTTGTTTTTCTTGTTTTATTGCCACTAGTCTCTAGTCAGTGTGTTAATCTTACAACCAGAACTCAATTACCCCCTGCATACACTAATTCTTTCACACGTGGTGTTTATTACCCTGACAAAGTTTTCAGATCCTCAGTTTTACATTCAACTCAGGACTTGTTCTTACCTTTCTTTTCCAATGTTACTTGGTTCCATGCTATACATGTCTCTGGGACCAATGGTACTAAGAGGTTTGATAACCCTGTCCTACCATTTAATGATGGTGTTTATTTTGCTTCCACTGAGAAGTCTAACATAATAAGAGGCTGGATTTTTGGTACTACTTTAGATTCGAAGACCCAGTCCCTACTTATTGTTAATAACGCTACTAATGTTGTTATTAAAGTCTGTGAATTTCAATTTTGTAATGATCCATTTTTGGGTGTTTATTACCACAAAAACAACAAAAGTTGGATGGAAAGTGAGTTCAGAGTTTATTCTAGTGCGAATAATTGCACTTTTGAATATGTCTCTCAGCCTTTTCTTATGGACCTTGAAGGAAAACAGGGTAATTTCAAAAATCTTAGGGAATTTGTGTTTAAGAATATTGATGGTTATTTTAAAATATATTCTAAGCACACGCCTATTAATTTAGTGCGTGATCTCCCTCAGGGTTTTTCGGCTTTAGAACCATTGGTAGATTTGCCAATAGGTATTAACATCACTAGGTTTCAAACTTTACTTGCTTTACATAGAAGTTATTTGACTCCTGGTGATTCTTCTTCAGGTTGGACAGCTGGTGCTGCAGCTTATTATGTGGGTTATCTTCAACCTAGGACTTTTCTATTAAAATATAATGAAAATGGAACCATTACAGATGCTGTAGACTGTGCACTTGACCCTCTCTCAGAAACAAAGTGTACGTTGAAATCCTTCACTGTAGAAAAAGGAATCTATCAAACTTCTAACTTTAGAGTCCAACCAACAGAATCTATTGTTAGATTTCCTAATATTACAAACTTGTGCCCTTTTGGTGAAGTTTTTAACGCCACCAGATTTGCATCTGTTTATGCTTGGAACAGGAAGAGAATCAGCAACTGTGTTGCTGATTATTCTGTCCTATATAATTCCGCATCATTTTCCACTTTTAAGTGTTATGGAGTGTCTCCTACTAAATTAAATGATCTCTGCTTTACTAATGTCTATGCAGATTCATTTGTAATTAGAGGTGATGAAGTCAGACAAATCGCTCCAGGGCAAACTGGAAAGATTGCTGATTATAATTATAAATTACCAGATGATTTTACAGGCTGCGTTATAGCTTGGAATTCTAACAATCTTGATTCTAAGGTTGGTGGTAATTATAATTACCTGTATAGATTGTTTAGGAAGTCTAATCTCAAACCTTTTGAGAGAGATATTTCAACTGAAATCTATCAGGCCGGTAGCACACCTTGTAATGGTGTTGAAGGTTTTAATTGTTACTTTCCTTTACAATCATATGGTTTCCAACCCACTAATGGTGTTGGTTACCAACCATACAGAGTAGTAGTACTTTCTTTTGAACTTCTACATGCACCAGCAACTGTTTGTGGACCTAAAAAGTCTACTAATTTGGTTAAAAACAAATGTGTCAATTTCAACTTCAATGGTTTAACAGGCACAGGTGTTCTTACTGAGTCTAACAAAAAGTTTCTGCCTTTCCAACAATTTGGCAGAGACATTGCTGACACTACTGATGCTGTCCGTGATCCACAGACACTTGAGATTCTTGACATTACACCATGTTCTTTTGGTGGTGTCAGTGTTATAACACCAGGAACAAATACTTCTAACCAGGTTGCTGTTCTTTATCAGGATGTTAACTGCACAGAAGTCCCTGTTGCTATTCATGCAGATCAACTTACTCCTACTTGGCGTGTTTATTCTACAGGTTCTAATGTTTTTCAAACACGTGCAGGCTGTTTAATAGGGGCTGAACATGTCAACAACTCATATGAGTGTGACATACCCATTGGTGCAGGTATATGCGCTAGTTATCAGACTCAGACTAATTCTCCTCGGCGGGCACGTAGTGTAGCTAGTCAATCCATCATTGCCTACACTATGTCACTTGGTGCAGAAAATTCAGTTGCTTACTCTAATAACTCTATTGCCATACCCACAAATTTTACTATTAGTGTTACCACAGAAATTCTACCAGTGTCTATGACCAAGACATCAGTAGATTGTACAATGTACATTTGTGGTGATTCAACTGAATGCAGCAATCTTTTGTTGCAATATGGCAGTTTTTGTACACAATTAAACCGTGCTTTAACTGGAATAGCTGTTGAACAAGACAAAAACACCCAAGAAGTTTTTGCACAAGTCAAACAAATTTACAAAACACCACCAATTAAAGATTTTGGTGGTTTTAATTTTTCACAAATATTACCAGATCCATCAAAACCAAGCAAGAGGTCATTTATTGAAGATCTACTTTTCAACAAAGTGACACTTGCAGATGCTGGCTTCATCAAACAATATGGTGATTGCCTTGGTGATATTGCTGCTAGAGACCTCATTTGTGCACAAAAGTTTAACGGCCTTACTGTTTTGCCACCTTTGCTCACAGATGAAATGATTGCTCAATACACTTCTGCACTGTTAGCGGGTACAATCACTTCTGGTTGGACCTTTGGTGCAGGTGCTGCATTACAAATACCATTTGCTATGCAAATGGCTTATAGGTTTAATGGTATTGGAGTTACACAGAATGTTCTCTATGAGAACCAAAAATTGATTGCCAACCAATTTAATAGTGCTATTGGCAAAATTCAAGACTCACTTTCTTCCACAGCAAGTGCACTTGGAAAACTTCAAGATGTGGTCAACCAAAATGCACAAGCTTTAAACACGCTTGTTAAACAACTTAGCTCCAATTTTGGTGCAATTTCAAGTGTTTTAAATGATATCCTTTCACGTCTTGACCCTCCTGAGGCTGAAGTGCAAATTGATAGGTTGATCACAGGCAGACTTCAAAGTTTGCAGACATATGTGACTCAACAATTAATTAGAGCTGCAGAAATCAGAGCTTCTGCTAATCTTGCTGCTACTAAAATGTCAGAGTGTGTACTTGGACAATCAAAAAGAGTTGATTTTTGTGGAAAGGGCTATCATCTTATGTCCTTCCCTCAGTCAGCACCTCATGGTGTAGTCTTCTTGCATGTGACTTATGTCCCTGCACAAGAAAAGAACTTCACAACTGCTCCTGCCATTTGTCATGATGGAAAAGCACACTTTCCTCGTGAAGGTGTCTTTGTTTCAAATGGCACACACTGGTTTGTAACACAAAGGAATTTTTATGAACCACAAATCATTACTACAGACAACACATTTGTGTCTGGTAACTGTGATGTTGTAATAGGAATTGTCAACAACACAGTTTATGATCCTTTGCAACCTGAATTAGACTCATTCAAGGAGGAGTTAGATAAATATTTTAAGAATCATACATCACCAGATGTTGATTTAGGTGACATCTCTGGCATTAATGCTTCAGTTGTAAACATTCAAAAAGAAATTGACCGCCTCAATGAGGTTGCCAAGAATTTAAATGAATCTCTCATCGATCTCCAAGAACTTGGAAAGTATGAGCAGTATATAAAATGGCCATGGTACATTTGGCTAGGTTTTATAGCTGGCTTGATTGCCATAGTAATGGTGACAATTATGCTTTGCTGTATGACCAGTTGCTGTAGTTGTCTCAAGGGCTGTTGTTCTTGTGGATCCTGCTGCAAATTTGATGAAGACGACTCTGAGCCAGTGCTCAAAGGAGTCAAATTACATTACACATAA'
vaccine = 'ATGTTCGTGTTCCTGGTGCTGCTGCCTCTGGTGTCCAGCCAGTGTGTGAACCTGACCACCAGAACACAGCTGCCTCCAGCCTACACCAACAGCTTTACCAGAGGCGTGTACTACCCCGACAAGGTGTTCAGATCCAGCGTGCTGCACTCTACCCAGGACCTGTTCCTGCCTTTCTTCAGCAACGTGACCTGGTTCCACGCCATCCACGTGTCCGGCACCAATGGCACCAAGAGATTCGACAACCCCGTGCTGCCCTTCAACGACGGGGTGTACTTTGCCAGCACCGAGAAGTCCAACATCATCAGAGGCTGGATCTTCGGCACCACACTGGACAGCAAGACCCAGAGCCTGCTGATCGTGAACAACGCCACCAACGTGGTCATCAAAGTGTGCGAGTTCCAGTTCTGCAACGACCCCTTCCTGGGCGTCTACTACCACAAGAACAACAAGAGCTGGATGGAAAGCGAGTTCCGGGTGTACAGCAGCGCCAACAACTGCACCTTCGAGTACGTGTCCCAGCCTTTCCTGATGGACCTGGAAGGCAAGCAGGGCAACTTCAAGAACCTGCGCGAGTTCGTGTTTAAGAACATCGACGGCTACTTCAAGATCTACAGCAAGCACACCCCTATCAACCTCGTGCGGGATCTGCCTCAGGGCTTCTCTGCTCTGGAACCCCTGGTGGATCTGCCCATCGGCATCAACATCACCCGGTTTCAGACACTGCTGGCCCTGCACAGAAGCTACCTGACACCTGGCGATAGCAGCAGCGGATGGACAGCTGGTGCCGCCGCTTACTATGTGGGCTACCTGCAGCCTAGAACCTTCCTGCTGAAGTACAACGAGAACGGCACCATCACCGACGCCGTGGATTGTGCTCTGGATCCTCTGAGCGAGACAAAGTGCACCCTGAAGTCCTTCACCGTGGAAAAGGGCATCTACCAGACCAGCAACTTCCGGGTGCAGCCCACCGAATCCATCGTGCGGTTCCCCAATATCACCAATCTGTGCCCCTTCGGCGAGGTGTTCAATGCCACCAGATTCGCCTCTGTGTACGCCTGGAACCGGAAGCGGATCAGCAATTGCGTGGCCGACTACTCCGTGCTGTACAACTCCGCCAGCTTCAGCACCTTCAAGTGCTACGGCGTGTCCCCTACCAAGCTGAACGACCTGTGCTTCACAAACGTGTACGCCGACAGCTTCGTGATCCGGGGAGATGAAGTGCGGCAGATTGCCCCTGGACAGACAGGCAAGATCGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGTGTGATTGCCTGGAACAGCAACAACCTGGACTCCAAAGTCGGCGGCAACTACAATTACCTGTACCGGCTGTTCCGGAAGTCCAATCTGAAGCCCTTCGAGCGGGACATCTCCACCGAGATCTATCAGGCCGGCAGCACCCCTTGTAACGGCGTGGAAGGCTTCAACTGCTACTTCCCACTGCAGTCCTACGGCTTTCAGCCCACAAATGGCGTGGGCTATCAGCCCTACAGAGTGGTGGTGCTGAGCTTCGAACTGCTGCATGCCCCTGCCACAGTGTGCGGCCCTAAGAAAAGCACCAATCTCGTGAAGAACAAATGCGTGAACTTCAACTTCAACGGCCTGACCGGCACCGGCGTGCTGACAGAGAGCAACAAGAAGTTCCTGCCATTCCAGCAGTTTGGCCGGGATATCGCCGATACCACAGACGCCGTTAGAGATCCCCAGACACTGGAAATCCTGGACATCACCCCTTGCAGCTTCGGCGGAGTGTCTGTGATCACCCCTGGCACCAACACCAGCAATCAGGTGGCAGTGCTGTACCAGGACGTGAACTGTACCGAAGTGCCCGTGGCCATTCACGCCGATCAGCTGACACCTACATGGCGGGTGTACTCCACCGGCAGCAATGTGTTTCAGACCAGAGCCGGCTGTCTGATCGGAGCCGAGCACGTGAACAATAGCTACGAGTGCGACATCCCCATCGGCGCTGGAATCTGCGCCAGCTACCAGACACAGACAAACAGCCCTCGGAGAGCCAGAAGCGTGGCCAGCCAGAGCATCATTGCCTACACAATGTCTCTGGGCGCCGAGAACAGCGTGGCCTACTCCAACAACTCTATCGCTATCCCCACCAACTTCACCATCAGCGTGACCACAGAGATCCTGCCTGTGTCCATGACCAAGACCAGCGTGGACTGCACCATGTACATCTGCGGCGATTCCACCGAGTGCTCCAACCTGCTGCTGCAGTACGGCAGCTTCTGCACCCAGCTGAATAGAGCCCTGACAGGGATCGCCGTGGAACAGGACAAGAACACCCAAGAGGTGTTCGCCCAAGTGAAGCAGATCTACAAGACCCCTCCTATCAAGGACTTCGGCGGCTTCAATTTCAGCCAGATTCTGCCCGATCCTAGCAAGCCCAGCAAGCGGAGCTTCATCGAGGACCTGCTGTTCAACAAAGTGACACTGGCCGACGCCGGCTTCATCAAGCAGTATGGCGATTGTCTGGGCGACATTGCCGCCAGGGATCTGATTTGCGCCCAGAAGTTTAACGGACTGACAGTGCTGCCTCCTCTGCTGACCGATGAGATGATCGCCCAGTACACATCTGCCCTGCTGGCCGGCACAATCACAAGCGGCTGGACATTTGGAGCAGGCGCCGCTCTGCAGATCCCCTTTGCTATGCAGATGGCCTACCGGTTCAACGGCATCGGAGTGACCCAGAATGTGCTGTACGAGAACCAGAAGCTGATCGCCAACCAGTTCAACAGCGCCATCGGCAAGATCCAGGACAGCCTGAGCAGCACAGCAAGCGCCCTGGGAAAGCTGCAGGACGTGGTCAACCAGAATGCCCAGGCACTGAACACCCTGGTCAAGCAGCTGTCCTCCAACTTCGGCGCCATCAGCTCTGTGCTGAACGATATCCTGAGCAGACTGGACCCTCCTGAGGCCGAGGTGCAGATCGACAGACTGATCACAGGCAGACTGCAGAGCCTCCAGACATACGTGACCCAGCAGCTGATCAGAGCCGCCGAGATTAGAGCCTCTGCCAATCTGGCCGCCACCAAGATGTCTGAGTGTGTGCTGGGCCAGAGCAAGAGAGTGGACTTTTGCGGCAAGGGCTACCACCTGATGAGCTTCCCTCAGTCTGCCCCTCACGGCGTGGTGTTTCTGCACGTGACATATGTGCCCGCTCAAGAGAAGAATTTCACCACCGCTCCAGCCATCTGCCACGACGGCAAAGCCCACTTTCCTAGAGAAGGCGTGTTCGTGTCCAACGGCACCCATTGGTTCGTGACACAGCGGAACTTCTACGAGCCCCAGATCATCACCACCGACAACACCTTCGTGTCTGGCAACTGCGACGTCGTGATCGGCATTGTGAACAATACCGTGTACGACCCTCTGCAGCCCGAGCTGGACAGCTTCAAAGAGGAACTGGACAAGTACTTTAAGAACCACACAAGCCCCGACGTGGACCTGGGCGATATCAGCGGAATCAATGCCAGCGTCGTGAACATCCAGAAAGAGATCGACCGGCTGAACGAGGTGGCCAAGAATCTGAACGAGAGCCTGATCGACCTGCAAGAACTGGGGAAGTACGAGCAGTACATCAAGTGGCCCTGGTACATCTGGCTGGGCTTTATCGCCGGACTGATTGCCATCGTGATGGTCACAATCATGCTGTGTTGCATGACCAGCTGCTGTAGCTGCCTGAAGGGCTGTTGTAGCTGTGGCAGCTGCTGCAAGTTCGACGAGGACGATTCTGAGCCCGTGCTGAAGGGCGTGAAACTGCACTACACATGA'

codon_usage_table = python_codon_tables.get_codons_table("h_sapiens_9606")

def compute_match(one, two):
    num_mismatches = 0
    for base1, base2 in zip(one, two):
        if base1 != base2:
            num_mismatches = num_mismatches + 1
    return (1 - float(num_mismatches) / float(len(one)))

def optimize_virus():
    problem = DnaOptimizationProblem(
        sequence=virus,
        constraints=[
            EnforceGCContent(mini=0.4, maxi=0.7, window=100),
            EnforceTranslation(),
            AvoidHairpins(),
            # AvoidStopCodons(),
            # EnforceMeltingTemperature(),
        ],
        objectives=[
            CodonOptimize(codon_usage_table=codon_usage_table)
        ]
    )
    problem.resolve_constraints()
    problem.optimize()
    return compute_match(vaccine, problem.sequence)

def average_match(num_iterations=20):
    return sum([optimize_virus() for i in range(num_iterations)])/num_iterations

score = average_match()
print(f"{score:.2%}")
$ python optimization.py
90.91%

@pvieito
Copy link

pvieito commented Jan 1, 2021

Updated version with the original algorithm and codon-based score computation:

#%%

import pandas as pd

virus_vaccine_codons_df = pd.read_csv("https://github.com/berthubert/bnt162b2/raw/master/side-by-side.csv")
virus_vaccine_codons_df.head()

#%%

virus_sequence = "".join(virus_vaccine_codons_df.codonOrig.tolist())
vaccine_sequence = "".join(virus_vaccine_codons_df.codonVaccine.tolist())

virus_sequence[:10], vaccine_sequence[:10]

#%%

def compose_sequence_series(sequence: str, *, as_codons=None) -> pd.Series:
    chunk_len = 3 if as_codons else 1
    chunks = (sequence[0+i:chunk_len+i] for i in range(0, len(sequence), chunk_len))
    return pd.Series(chunks)

def compute_sequence_match(sequence_1: str, sequence_2: str, *, as_codons=None) -> float:
    assert len(sequence_1) == len(sequence_2)
    sequence_1 = compose_sequence_series(sequence_1, as_codons=as_codons)
    sequence_2 = compose_sequence_series(sequence_2, as_codons=as_codons)
    match: pd.Series = (sequence_1 == sequence_2)
    return match.astype(float).mean()

#%%

compute_sequence_match(virus_sequence, vaccine_sequence)
# 0.7223966509680796

#%%

compute_sequence_match(virus_sequence, vaccine_sequence, as_codons=True)
# 0.27629513343799056 (As referenced at https://berthub.eu/articles/posts/part-2-reverse-engineering-source-code-of-the-biontech-pfizer-vaccine/)

#%%

import python_codon_tables

codon_usage_table = python_codon_tables.get_codons_table("h_sapiens_9606")

#%%

from dnachisel import *

def optimize_virus_sequence(sequence: str) -> str:
    problem = DnaOptimizationProblem(
        sequence=sequence,
        constraints=[
            EnforceGCContent(mini=0.4, maxi=0.7, window=50),
            EnforceTranslation()
        ],
        objectives=[
            CodonOptimize(codon_usage_table=codon_usage_table)
        ]
    )
    problem.resolve_constraints()
    problem.optimize()
    return problem.sequence

#%%

optimized_sequence = optimize_virus_sequence(sequence=virus_sequence)

#%%

compute_sequence_match(virus_sequence, optimized_sequence, as_codons=False)
# 0.6967556253270539

#%%

compute_sequence_match(virus_sequence, optimized_sequence, as_codons=True)
# 0.22841444270015698 :(

#%%

@naomiajacobs
Copy link
Author

👏 @pvieto nice! I didn't even try optimizing for humans 😂

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment