This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#%% | |
import pandas as pd | |
import simplejson as json | |
from datetime import datetime | |
#%% | |
with open('1R3zG-DJRqN7MFLGqjhZs26D1SJcKI7pkd1j1XDwAiIM.json') as birdJson: | |
birdsInfo = json.load(birdJson)['sheets']['Sheet1'] | |
newInfo = {} | |
for bird in birdsInfo: | |
birdIndex = 'bird' + bird['id'] | |
newInfo[birdIndex] = {"name":bird['name'], "image": "https://interactive.guim.co.uk/embed/aus/2019/bird-pics/" + bird['img']} | |
df = pd.read_csv("results.csv") | |
df['time'] = pd.to_datetime(df['last_modified_time'],unit='ms') | |
df['time'] = df['time'].dt.tz_localize('UTC').dt.tz_convert('Australia/Sydney') | |
df = df[df['time'] >= '2019-10-28'] | |
df = df[df['counted'] == 'valid'] | |
def addBird(row): | |
data = json.loads(row['data']) | |
index = "bird" + str(data['iid']) | |
if index in newInfo: | |
return newInfo[index]['name'] | |
def addImage(row): | |
data = json.loads(row['data']) | |
index = "bird" + str(data['iid']) | |
if index in newInfo: | |
return newInfo[index]['image'] | |
df['name'] = df.apply(addBird, axis=1) | |
df['img'] = df.apply(addImage, axis=1) | |
df['count'] = 1 | |
#%% | |
#test = df[(df['name'] == "Short-tailed shearwater (muttonbird)") | (df['name'] == "Australian magpie")] | |
df_10 = df[['name','img','time','count']].groupby(['name','img']).resample('h', on='time').sum().reset_index() | |
test = df_10[df_10['name'] == 'Rainbow lorikeet'] | |
# df_10 = df[['name','time','count']].resample('h', on='time').sum().reset_index() | |
#%% | |
df_10['cumulative'] = df_10.groupby(['name'])['count'].apply(lambda x: x.cumsum()) | |
#%% | |
test = df_10[df_10['name'] == "Short-tailed shearwater (muttonbird)"] | |
#%% | |
#df_10['time'] = df_10['time'].dt.strftime('%H:%M %d %b') | |
df_10.to_csv('top-ten.csv') | |
#%% | |
pvt = df_10.pivot_table(index=['name','img'], columns='time', values='cumulative').reset_index() | |
#newCols = pvt.columns | |
# | |
#for col in newCols: | |
# print(col) | |
mapper = lambda x: x.strftime('%H:%M %d %b') if isinstance(x, datetime) else x | |
pvt.columns = pvt.columns.map(mapper) | |
pvt.to_csv('pivot.csv') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment