Skip to content

Instantly share code, notes, and snippets.

@nmayorov
Last active August 15, 2018 13:03
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save nmayorov/05c04493f773cfb71b66468bdbbf800f to your computer and use it in GitHub Desktop.
Save nmayorov/05c04493f773cfb71b66468bdbbf800f to your computer and use it in GitHub Desktop.
"ELEC" nonlinear optimization problem definition
import numpy as np
from scipy.linalg import block_diag
class ProblemELEC:
def __init__(self, n_electrons, random_state=0):
self.n_electrons = n_electrons
self.rng = np.random.RandomState(random_state)
def x0(self):
phi = self.rng.uniform(0, 2 * np.pi, self.n_electrons)
theta = self.rng.uniform(-np.pi, np.pi, self.n_electrons)
x = np.cos(theta) * np.cos(phi)
y = np.cos(theta) * np.sin(phi)
z = np.sin(theta)
return np.hstack((x, y, z))
def v0(self):
return np.zeros(self.n_electrons)
def _compute_coordinate_deltas(self, x):
x_coord = x[:self.n_electrons]
y_coord = x[self.n_electrons:2 * self.n_electrons]
z_coord = x[2 * self.n_electrons:]
dx = x_coord[:, None] - x_coord
dy = y_coord[:, None] - y_coord
dz = z_coord[:, None] - z_coord
return dx, dy, dz
def fun(self, x):
dx, dy, dz = self._compute_coordinate_deltas(x)
with np.errstate(divide='ignore'):
dm1 = (dx**2 + dy**2 + dz**2) ** -0.5
dm1[np.diag_indices_from(dm1)] = 0
return 0.5 * np.sum(dm1)
def grad(self, x):
dx, dy, dz = self._compute_coordinate_deltas(x)
with np.errstate(divide='ignore'):
dm3 = (dx**2 + dy**2 + dz**2) ** -1.5
dm3[np.diag_indices_from(dm3)] = 0
grad_x = -np.sum(dx * dm3, axis=1)
grad_y = -np.sum(dy * dm3, axis=1)
grad_z = -np.sum(dz * dm3, axis=1)
return np.hstack((grad_x, grad_y, grad_z))
def hess(self, x):
dx, dy, dz = self._compute_coordinate_deltas(x)
d = (dx**2 + dy**2 + dz**2) ** 0.5
with np.errstate(divide='ignore'):
dm3 = d ** -3
dm5 = d ** -5
i = np.arange(self.n_electrons)
dm3[i, i] = 0
dm5[i, i] = 0
Hxx = dm3 - 3 * dx**2 * dm5
Hxx[i, i] = -np.sum(Hxx, axis=1)
Hxy = -3 * dx * dy * dm5
Hxy[i, i] = -np.sum(Hxy, axis=1)
Hxz = -3 * dx * dz * dm5
Hxz[i, i] = -np.sum(Hxz, axis=1)
Hyy = dm3 - 3 * dy**2 * dm5
Hyy[i, i] = -np.sum(Hyy, axis=1)
Hyz = -3 * dy * dz * dm5
Hyz[i, i] = -np.sum(Hyz, axis=1)
Hzz = dm3 - 3 * dz**2 * dm5
Hzz[i, i] = -np.sum(Hzz, axis=1)
H = np.vstack((
np.hstack((Hxx, Hxy, Hxz)),
np.hstack((Hxy, Hyy, Hyz)),
np.hstack((Hxz, Hyz, Hzz))
))
return H
def ceq(self, x):
x_coord = x[:self.n_electrons]
y_coord = x[self.n_electrons:2 * self.n_electrons]
z_coord = x[2 * self.n_electrons:]
return x_coord**2 + y_coord**2 + z_coord**2 - 1
def ceq_jac(self, x):
x_coord = x[:self.n_electrons]
y_coord = x[self.n_electrons:2 * self.n_electrons]
z_coord = x[2 * self.n_electrons:]
Jx = 2 * np.diag(x_coord)
Jy = 2 * np.diag(y_coord)
Jz = 2 * np.diag(z_coord)
return np.hstack((Jx, Jy, Jz))
def ceq_hess(self, x, v):
D = 2 * np.diag(v)
return block_diag(D, D, D)
def lagrangian_hess(self, x, v):
return self.hess(x) + self.ceq_hess(x, v)
@denis-bz
Copy link

Is there a description of this problem someplace, please ?
What's a reasonable value for n_electrons ?
(I'm looking for problems with noisy gradients, not classification / not neuralnets, to try to plot gradient flows.)
Thanks

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment