Skip to content

Instantly share code, notes, and snippets.

@omgwtfgames
Forked from KdotJPG/OpenSimplex2S.java
Last active March 17, 2021 00:18
Show Gist options
  • Star 15 You must be signed in to star a gist
  • Fork 2 You must be signed in to fork a gist
  • Save omgwtfgames/601497972e4e30fd9c5f to your computer and use it in GitHub Desktop.
Save omgwtfgames/601497972e4e30fd9c5f to your computer and use it in GitHub Desktop.
Visually axis-decorrelated coherent noise function based on the Simplectic honeycomb - C# port
/*
* OpenSimplex (Simplectic) Noise Test for Unity (C#)
* This file is in the Public Domain.
*
* This file is intended to test the functionality of OpenSimplexNoise.cs
* Attach this script to a GameObject with mesh (eg a Quad prefab).
* Texture is updated every frame to assist profiling for performance.
* Using a RenderTexture should perform better, however using a Texture2D
* as an example makes this compatible with the free version of Unity.
*
*/
using UnityEngine;
using System.Collections;
[RequireComponent(typeof(MeshRenderer))]
public class NoiseTexture : MonoBehaviour {
public int width = 512;
public int height = 512;
public float feature_size = 24.0f;
Texture2D _texture;
Color[] _colorArray;
void Start () {
_texture = new Texture2D(width, height);
// Filling an array and using Texture2D.SetPixels is slightly faster
// than calling SetPixel many times
_colorArray = new Color[width * height];
renderer.material.mainTexture = _texture;
}
void UpdateTexture()
{
OpenSimplexNoise noise = new OpenSimplexNoise((int) (Time.timeSinceLevelLoad * Time.deltaTime * 1000));
for (int y = 0; y < height; y++)
{
for (int x = 0; x < width; x++)
{
float value = (float)noise.eval((double) x / feature_size, (double) y / feature_size, 0.0);
value = (value * 0.5f) + 0.5f;
Color color = new Color(value, value, value);
_colorArray[x + (y * width)] = color;
}
}
_texture.SetPixels(_colorArray);
_texture.Apply();
renderer.material.mainTexture = _texture;
}
void Update () {
UpdateTexture();
}
}
/*
* OpenSimplex (Simplectic) Noise in Java.
* by Kurt Spencer
*
* C# port by Andrew Perry (October 12, 2014).
* Modified:
* - Gradient arrays: byte -> sbyte, made them readonly
* - Array length syntax: .length -> .Length
* - Constants: static final -> const
* - Arrays in constructors: short -> byte (except one array initialization loop)
* - Added UNLICENSE Public Domain dedication & disclaimer to header
*
* v1.1 (October 5, 2014)
* - Added 2D and 4D implementations.
* - Proper gradient sets for all dimensions, from a
* dimensionally-generalizable scheme with an actual
* rhyme and reason behind it.
* - Removed default permutation array in favor of
* default seed.
* - Changed seed-based constructor to be independent
* of any particular randomization library, so results
* will be the same when ported to other languages.
*
*
* This is free and unencumbered software released into the public domain.
* Anyone is free to copy, modify, publish, use, compile, sell, or
* distribute this software, either in source code form or as a compiled
* binary, for any purpose, commercial or non-commercial, and by any
* means.
*
* In jurisdictions that recognize copyright laws, the author or authors
* of this software dedicate any and all copyright interest in the
* software to the public domain. We make this dedication for the benefit
* of the public at large and to the detriment of our heirs and
* successors. We intend this dedication to be an overt act of
* relinquishment in perpetuity of all present and future rights to this
* software under copyright law.
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
public class OpenSimplexNoise {
private const double STRETCH_CONSTANT_2D = -0.211324865405187; //(1/Math.sqrt(2+1)-1)/2;
private const double SQUISH_CONSTANT_2D = 0.366025403784439; //(Math.sqrt(2+1)-1)/2;
private const double STRETCH_CONSTANT_3D = -1.0 / 6; //(1/Math.sqrt(3+1)-1)/3;
private const double SQUISH_CONSTANT_3D = 1.0 / 3; //(Math.sqrt(3+1)-1)/3;
private const double STRETCH_CONSTANT_4D = -0.138196601125011; //(1/Math.sqrt(4+1)-1)/4;
private const double SQUISH_CONSTANT_4D = 0.309016994374947; //(Math.sqrt(4+1)-1)/4;
private const double NORM_CONSTANT_2D = 47;
private const double NORM_CONSTANT_3D = 103;
private const double NORM_CONSTANT_4D = 30;
private const long DEFAULT_SEED = 0;
private byte[] perm;
private byte[] permGradIndex3D;
public OpenSimplexNoise() : this(OpenSimplexNoise.DEFAULT_SEED) { }
public OpenSimplexNoise(byte[] perm) {
this.perm = perm;
permGradIndex3D = new byte[256];
for (int i = 0; i < 256; i++) {
//Since 3D has 24 gradients, simple bitmask won't work, so precompute modulo array.
permGradIndex3D[i] = (byte)((perm[i] % (gradients3D.Length / 3)) * 3);
}
}
//Initializes the class using a permutation array generated from a 64-bit seed.
//Generates a proper permutation (i.e. doesn't merely perform N successive pair swaps on a base array)
//Uses a simple 64-bit LCG.
public OpenSimplexNoise(long seed) {
perm = new byte[256];
permGradIndex3D = new byte[256];
byte[] source = new byte[256];
for (short i = 0; i < 256; i++)
source[i] = (byte)i;
seed = seed * 6364136223846793005L + 1442695040888963407L;
seed = seed * 6364136223846793005L + 1442695040888963407L;
seed = seed * 6364136223846793005L + 1442695040888963407L;
for (int i = 255; i >= 0; i--) {
seed = seed * 6364136223846793005L + 1442695040888963407L;
int r = (int)((seed + 31) % (i + 1));
if (r < 0)
r += (i + 1);
perm[i] = source[r];
permGradIndex3D[i] = (byte)((perm[i] % (gradients3D.Length / 3)) * 3);
source[r] = source[i];
}
}
//2D OpenSimplex (Simplectic) Noise.
public double eval(double x, double y) {
//Place input coordinates onto grid.
double stretchOffset = (x + y) * STRETCH_CONSTANT_2D;
double xs = x + stretchOffset;
double ys = y + stretchOffset;
//Floor to get grid coordinates of rhombus (stretched square) super-cell origin.
int xsb = fastFloor(xs);
int ysb = fastFloor(ys);
//Skew out to get actual coordinates of rhombus origin. We'll need these later.
double squishOffset = (xsb + ysb) * SQUISH_CONSTANT_2D;
double xb = xsb + squishOffset;
double yb = ysb + squishOffset;
//Compute grid coordinates relative to rhombus origin.
double xins = xs - xsb;
double yins = ys - ysb;
//Sum those together to get a value that determines which region we're in.
double inSum = xins + yins;
//Positions relative to origin point.
double dx0 = x - xb;
double dy0 = y - yb;
//We'll be defining these inside the next block and using them afterwards.
double dx_ext, dy_ext;
int xsv_ext, ysv_ext;
double value = 0;
//Contribution (1,0)
double dx1 = dx0 - 1 - SQUISH_CONSTANT_2D;
double dy1 = dy0 - 0 - SQUISH_CONSTANT_2D;
double attn1 = 2 - dx1 * dx1 - dy1 * dy1;
if (attn1 > 0) {
attn1 *= attn1;
value += attn1 * attn1 * extrapolate(xsb + 1, ysb + 0, dx1, dy1);
}
//Contribution (0,1)
double dx2 = dx0 - 0 - SQUISH_CONSTANT_2D;
double dy2 = dy0 - 1 - SQUISH_CONSTANT_2D;
double attn2 = 2 - dx2 * dx2 - dy2 * dy2;
if (attn2 > 0) {
attn2 *= attn2;
value += attn2 * attn2 * extrapolate(xsb + 0, ysb + 1, dx2, dy2);
}
if (inSum <= 1) { //We're inside the triangle (2-Simplex) at (0,0)
double zins = 1 - inSum;
if (zins > xins || zins > yins) { //(0,0) is one of the closest two triangular vertices
if (xins > yins) {
xsv_ext = xsb + 1;
ysv_ext = ysb - 1;
dx_ext = dx0 - 1;
dy_ext = dy0 + 1;
} else {
xsv_ext = xsb - 1;
ysv_ext = ysb + 1;
dx_ext = dx0 + 1;
dy_ext = dy0 - 1;
}
} else { //(1,0) and (0,1) are the closest two vertices.
xsv_ext = xsb + 1;
ysv_ext = ysb + 1;
dx_ext = dx0 - 1 - 2 * SQUISH_CONSTANT_2D;
dy_ext = dy0 - 1 - 2 * SQUISH_CONSTANT_2D;
}
} else { //We're inside the triangle (2-Simplex) at (1,1)
double zins = 2 - inSum;
if (zins < xins || zins < yins) { //(0,0) is one of the closest two triangular vertices
if (xins > yins) {
xsv_ext = xsb + 2;
ysv_ext = ysb + 0;
dx_ext = dx0 - 2 - 2 * SQUISH_CONSTANT_2D;
dy_ext = dy0 + 0 - 2 * SQUISH_CONSTANT_2D;
} else {
xsv_ext = xsb + 0;
ysv_ext = ysb + 2;
dx_ext = dx0 + 0 - 2 * SQUISH_CONSTANT_2D;
dy_ext = dy0 - 2 - 2 * SQUISH_CONSTANT_2D;
}
} else { //(1,0) and (0,1) are the closest two vertices.
dx_ext = dx0;
dy_ext = dy0;
xsv_ext = xsb;
ysv_ext = ysb;
}
xsb += 1;
ysb += 1;
dx0 = dx0 - 1 - 2 * SQUISH_CONSTANT_2D;
dy0 = dy0 - 1 - 2 * SQUISH_CONSTANT_2D;
}
//Contribution (0,0) or (1,1)
double attn0 = 2 - dx0 * dx0 - dy0 * dy0;
if (attn0 > 0) {
attn0 *= attn0;
value += attn0 * attn0 * extrapolate(xsb, ysb, dx0, dy0);
}
//Extra Vertex
double attn_ext = 2 - dx_ext * dx_ext - dy_ext * dy_ext;
if (attn_ext > 0) {
attn_ext *= attn_ext;
value += attn_ext * attn_ext * extrapolate(xsv_ext, ysv_ext, dx_ext, dy_ext);
}
return value / NORM_CONSTANT_2D;
}
//3D OpenSimplex (Simplectic) Noise.
public double eval(double x, double y, double z) {
//Place input coordinates on simplectic honeycomb.
double stretchOffset = (x + y + z) * STRETCH_CONSTANT_3D;
double xs = x + stretchOffset;
double ys = y + stretchOffset;
double zs = z + stretchOffset;
//Floor to get simplectic honeycomb coordinates of rhombohedron (stretched cube) super-cell origin.
int xsb = fastFloor(xs);
int ysb = fastFloor(ys);
int zsb = fastFloor(zs);
//Skew out to get actual coordinates of rhombohedron origin. We'll need these later.
double squishOffset = (xsb + ysb + zsb) * SQUISH_CONSTANT_3D;
double xb = xsb + squishOffset;
double yb = ysb + squishOffset;
double zb = zsb + squishOffset;
//Compute simplectic honeycomb coordinates relative to rhombohedral origin.
double xins = xs - xsb;
double yins = ys - ysb;
double zins = zs - zsb;
//Sum those together to get a value that determines which region we're in.
double inSum = xins + yins + zins;
//Positions relative to origin point.
double dx0 = x - xb;
double dy0 = y - yb;
double dz0 = z - zb;
//We'll be defining these inside the next block and using them afterwards.
double dx_ext0, dy_ext0, dz_ext0;
double dx_ext1, dy_ext1, dz_ext1;
int xsv_ext0, ysv_ext0, zsv_ext0;
int xsv_ext1, ysv_ext1, zsv_ext1;
double value = 0;
if (inSum <= 1) { //We're inside the tetrahedron (3-Simplex) at (0,0,0)
//Determine which two of (0,0,1), (0,1,0), (1,0,0) are closest.
byte aPoint = 0x01;
double aScore = xins;
byte bPoint = 0x02;
double bScore = yins;
if (aScore >= bScore && zins > bScore) {
bScore = zins;
bPoint = 0x04;
} else if (aScore < bScore && zins > aScore) {
aScore = zins;
aPoint = 0x04;
}
//Now we determine the two lattice points not part of the tetrahedron that may contribute.
//This depends on the closest two tetrahedral vertices, including (0,0,0)
double wins = 1 - inSum;
if (wins > aScore || wins > bScore) { //(0,0,0) is one of the closest two tetrahedral vertices.
byte c = (bScore > aScore ? bPoint : aPoint); //Our other closest vertex is the closest out of a and b.
if ((c & 0x01) == 0) {
xsv_ext0 = xsb - 1;
xsv_ext1 = xsb;
dx_ext0 = dx0 + 1;
dx_ext1 = dx0;
} else {
xsv_ext0 = xsv_ext1 = xsb + 1;
dx_ext0 = dx_ext1 = dx0 - 1;
}
if ((c & 0x02) == 0) {
ysv_ext0 = ysv_ext1 = ysb;
dy_ext0 = dy_ext1 = dy0;
if ((c & 0x01) == 0) {
ysv_ext1 -= 1;
dy_ext1 += 1;
} else {
ysv_ext0 -= 1;
dy_ext0 += 1;
}
} else {
ysv_ext0 = ysv_ext1 = ysb + 1;
dy_ext0 = dy_ext1 = dy0 - 1;
}
if ((c & 0x04) == 0) {
zsv_ext0 = zsb;
zsv_ext1 = zsb - 1;
dz_ext0 = dz0;
dz_ext1 = dz0 + 1;
} else {
zsv_ext0 = zsv_ext1 = zsb + 1;
dz_ext0 = dz_ext1 = dz0 - 1;
}
} else { //(0,0,0) is not one of the closest two tetrahedral vertices.
byte c = (byte)(aPoint | bPoint); //Our two extra vertices are determined by the closest two.
if ((c & 0x01) == 0) {
xsv_ext0 = xsb;
xsv_ext1 = xsb - 1;
dx_ext0 = dx0 - 2 * SQUISH_CONSTANT_3D;
dx_ext1 = dx0 + 1 - SQUISH_CONSTANT_3D;
} else {
xsv_ext0 = xsv_ext1 = xsb + 1;
dx_ext0 = dx0 - 1 - 2 * SQUISH_CONSTANT_3D;
dx_ext1 = dx0 - 1 - SQUISH_CONSTANT_3D;
}
if ((c & 0x02) == 0) {
ysv_ext0 = ysb;
ysv_ext1 = ysb - 1;
dy_ext0 = dy0 - 2 * SQUISH_CONSTANT_3D;
dy_ext1 = dy0 + 1 - SQUISH_CONSTANT_3D;
} else {
ysv_ext0 = ysv_ext1 = ysb + 1;
dy_ext0 = dy0 - 1 - 2 * SQUISH_CONSTANT_3D;
dy_ext1 = dy0 - 1 - SQUISH_CONSTANT_3D;
}
if ((c & 0x04) == 0) {
zsv_ext0 = zsb;
zsv_ext1 = zsb - 1;
dz_ext0 = dz0 - 2 * SQUISH_CONSTANT_3D;
dz_ext1 = dz0 + 1 - SQUISH_CONSTANT_3D;
} else {
zsv_ext0 = zsv_ext1 = zsb + 1;
dz_ext0 = dz0 - 1 - 2 * SQUISH_CONSTANT_3D;
dz_ext1 = dz0 - 1 - SQUISH_CONSTANT_3D;
}
}
//Contribution (0,0,0)
double attn0 = 2 - dx0 * dx0 - dy0 * dy0 - dz0 * dz0;
if (attn0 > 0) {
attn0 *= attn0;
value += attn0 * attn0 * extrapolate(xsb + 0, ysb + 0, zsb + 0, dx0, dy0, dz0);
}
//Contribution (1,0,0)
double dx1 = dx0 - 1 - SQUISH_CONSTANT_3D;
double dy1 = dy0 - 0 - SQUISH_CONSTANT_3D;
double dz1 = dz0 - 0 - SQUISH_CONSTANT_3D;
double attn1 = 2 - dx1 * dx1 - dy1 * dy1 - dz1 * dz1;
if (attn1 > 0) {
attn1 *= attn1;
value += attn1 * attn1 * extrapolate(xsb + 1, ysb + 0, zsb + 0, dx1, dy1, dz1);
}
//Contribution (0,1,0)
double dx2 = dx0 - 0 - SQUISH_CONSTANT_3D;
double dy2 = dy0 - 1 - SQUISH_CONSTANT_3D;
double dz2 = dz1;
double attn2 = 2 - dx2 * dx2 - dy2 * dy2 - dz2 * dz2;
if (attn2 > 0) {
attn2 *= attn2;
value += attn2 * attn2 * extrapolate(xsb + 0, ysb + 1, zsb + 0, dx2, dy2, dz2);
}
//Contribution (0,0,1)
double dx3 = dx2;
double dy3 = dy1;
double dz3 = dz0 - 1 - SQUISH_CONSTANT_3D;
double attn3 = 2 - dx3 * dx3 - dy3 * dy3 - dz3 * dz3;
if (attn3 > 0) {
attn3 *= attn3;
value += attn3 * attn3 * extrapolate(xsb + 0, ysb + 0, zsb + 1, dx3, dy3, dz3);
}
} else if (inSum >= 2) { //We're inside the tetrahedron (3-Simplex) at (1,1,1)
//Determine which two tetrahedral vertices are the closest, out of (1,1,0), (1,0,1), (0,1,1) but not (1,1,1).
byte aPoint = 0x06;
double aScore = xins;
byte bPoint = 0x05;
double bScore = yins;
if (aScore <= bScore && zins < bScore) {
bScore = zins;
bPoint = 0x03;
} else if (aScore > bScore && zins < aScore) {
aScore = zins;
aPoint = 0x03;
}
//Now we determine the two lattice points not part of the tetrahedron that may contribute.
//This depends on the closest two tetrahedral vertices, including (1,1,1)
double wins = 3 - inSum;
if (wins < aScore || wins < bScore) { //(1,1,1) is one of the closest two tetrahedral vertices.
byte c = (bScore < aScore ? bPoint : aPoint); //Our other closest vertex is the closest out of a and b.
if ((c & 0x01) != 0) {
xsv_ext0 = xsb + 2;
xsv_ext1 = xsb + 1;
dx_ext0 = dx0 - 2 - 3 * SQUISH_CONSTANT_3D;
dx_ext1 = dx0 - 1 - 3 * SQUISH_CONSTANT_3D;
} else {
xsv_ext0 = xsv_ext1 = xsb;
dx_ext0 = dx_ext1 = dx0 - 3 * SQUISH_CONSTANT_3D;
}
if ((c & 0x02) != 0) {
ysv_ext0 = ysv_ext1 = ysb + 1;
dy_ext0 = dy_ext1 = dy0 - 1 - 3 * SQUISH_CONSTANT_3D;
if ((c & 0x01) != 0) {
ysv_ext1 += 1;
dy_ext1 -= 1;
} else {
ysv_ext0 += 1;
dy_ext0 -= 1;
}
} else {
ysv_ext0 = ysv_ext1 = ysb;
dy_ext0 = dy_ext1 = dy0 - 3 * SQUISH_CONSTANT_3D;
}
if ((c & 0x04) != 0) {
zsv_ext0 = zsb + 1;
zsv_ext1 = zsb + 2;
dz_ext0 = dz0 - 1 - 3 * SQUISH_CONSTANT_3D;
dz_ext1 = dz0 - 2 - 3 * SQUISH_CONSTANT_3D;
} else {
zsv_ext0 = zsv_ext1 = zsb;
dz_ext0 = dz_ext1 = dz0 - 3 * SQUISH_CONSTANT_3D;
}
} else { //(1,1,1) is not one of the closest two tetrahedral vertices.
byte c = (byte)(aPoint & bPoint); //Our two extra vertices are determined by the closest two.
if ((c & 0x01) != 0) {
xsv_ext0 = xsb + 1;
xsv_ext1 = xsb + 2;
dx_ext0 = dx0 - 1 - SQUISH_CONSTANT_3D;
dx_ext1 = dx0 - 2 - 2 * SQUISH_CONSTANT_3D;
} else {
xsv_ext0 = xsv_ext1 = xsb;
dx_ext0 = dx0 - SQUISH_CONSTANT_3D;
dx_ext1 = dx0 - 2 * SQUISH_CONSTANT_3D;
}
if ((c & 0x02) != 0) {
ysv_ext0 = ysb + 1;
ysv_ext1 = ysb + 2;
dy_ext0 = dy0 - 1 - SQUISH_CONSTANT_3D;
dy_ext1 = dy0 - 2 - 2 * SQUISH_CONSTANT_3D;
} else {
ysv_ext0 = ysv_ext1 = ysb;
dy_ext0 = dy0 - SQUISH_CONSTANT_3D;
dy_ext1 = dy0 - 2 * SQUISH_CONSTANT_3D;
}
if ((c & 0x04) != 0) {
zsv_ext0 = zsb + 1;
zsv_ext1 = zsb + 2;
dz_ext0 = dz0 - 1 - SQUISH_CONSTANT_3D;
dz_ext1 = dz0 - 2 - 2 * SQUISH_CONSTANT_3D;
} else {
zsv_ext0 = zsv_ext1 = zsb;
dz_ext0 = dz0 - SQUISH_CONSTANT_3D;
dz_ext1 = dz0 - 2 * SQUISH_CONSTANT_3D;
}
}
//Contribution (1,1,0)
double dx3 = dx0 - 1 - 2 * SQUISH_CONSTANT_3D;
double dy3 = dy0 - 1 - 2 * SQUISH_CONSTANT_3D;
double dz3 = dz0 - 0 - 2 * SQUISH_CONSTANT_3D;
double attn3 = 2 - dx3 * dx3 - dy3 * dy3 - dz3 * dz3;
if (attn3 > 0) {
attn3 *= attn3;
value += attn3 * attn3 * extrapolate(xsb + 1, ysb + 1, zsb + 0, dx3, dy3, dz3);
}
//Contribution (1,0,1)
double dx2 = dx3;
double dy2 = dy0 - 0 - 2 * SQUISH_CONSTANT_3D;
double dz2 = dz0 - 1 - 2 * SQUISH_CONSTANT_3D;
double attn2 = 2 - dx2 * dx2 - dy2 * dy2 - dz2 * dz2;
if (attn2 > 0) {
attn2 *= attn2;
value += attn2 * attn2 * extrapolate(xsb + 1, ysb + 0, zsb + 1, dx2, dy2, dz2);
}
//Contribution (0,1,1)
double dx1 = dx0 - 0 - 2 * SQUISH_CONSTANT_3D;
double dy1 = dy3;
double dz1 = dz2;
double attn1 = 2 - dx1 * dx1 - dy1 * dy1 - dz1 * dz1;
if (attn1 > 0) {
attn1 *= attn1;
value += attn1 * attn1 * extrapolate(xsb + 0, ysb + 1, zsb + 1, dx1, dy1, dz1);
}
//Contribution (1,1,1)
dx0 = dx0 - 1 - 3 * SQUISH_CONSTANT_3D;
dy0 = dy0 - 1 - 3 * SQUISH_CONSTANT_3D;
dz0 = dz0 - 1 - 3 * SQUISH_CONSTANT_3D;
double attn0 = 2 - dx0 * dx0 - dy0 * dy0 - dz0 * dz0;
if (attn0 > 0) {
attn0 *= attn0;
value += attn0 * attn0 * extrapolate(xsb + 1, ysb + 1, zsb + 1, dx0, dy0, dz0);
}
} else { //We're inside the octahedron (Rectified 3-Simplex) in between.
double aScore;
byte aPoint;
bool aIsFurtherSide;
double bScore;
byte bPoint;
bool bIsFurtherSide;
//Decide between point (0,0,1) and (1,1,0) as closest
double p1 = xins + yins;
if (p1 > 1) {
aScore = p1 - 1;
aPoint = 0x03;
aIsFurtherSide = true;
} else {
aScore = 1 - p1;
aPoint = 0x04;
aIsFurtherSide = false;
}
//Decide between point (0,1,0) and (1,0,1) as closest
double p2 = xins + zins;
if (p2 > 1) {
bScore = p2 - 1;
bPoint = 0x05;
bIsFurtherSide = true;
} else {
bScore = 1 - p2;
bPoint = 0x02;
bIsFurtherSide = false;
}
//The closest out of the two (1,0,0) and (0,1,1) will replace the furthest out of the two decided above, if closer.
double p3 = yins + zins;
if (p3 > 1) {
double score = p3 - 1;
if (aScore <= bScore && aScore < score) {
aScore = score;
aPoint = 0x06;
aIsFurtherSide = true;
} else if (aScore > bScore && bScore < score) {
bScore = score;
bPoint = 0x06;
bIsFurtherSide = true;
}
} else {
double score = 1 - p3;
if (aScore <= bScore && aScore < score) {
aScore = score;
aPoint = 0x01;
aIsFurtherSide = false;
} else if (aScore > bScore && bScore < score) {
bScore = score;
bPoint = 0x01;
bIsFurtherSide = false;
}
}
//Where each of the two closest points are determines how the extra two vertices are calculated.
if (aIsFurtherSide == bIsFurtherSide) {
if (aIsFurtherSide) { //Both closest points on (1,1,1) side
//One of the two extra points is (1,1,1)
dx_ext0 = dx0 - 1 - 3 * SQUISH_CONSTANT_3D;
dy_ext0 = dy0 - 1 - 3 * SQUISH_CONSTANT_3D;
dz_ext0 = dz0 - 1 - 3 * SQUISH_CONSTANT_3D;
xsv_ext0 = xsb + 1;
ysv_ext0 = ysb + 1;
zsv_ext0 = zsb + 1;
//Other extra point is based on the shared axis.
byte c = (byte)(aPoint & bPoint);
if ((c & 0x01) != 0) {
dx_ext1 = dx0 - 2 - 2 * SQUISH_CONSTANT_3D;
dy_ext1 = dy0 - 2 * SQUISH_CONSTANT_3D;
dz_ext1 = dz0 - 2 * SQUISH_CONSTANT_3D;
xsv_ext1 = xsb + 2;
ysv_ext1 = ysb;
zsv_ext1 = zsb;
} else if ((c & 0x02) != 0) {
dx_ext1 = dx0 - 2 * SQUISH_CONSTANT_3D;
dy_ext1 = dy0 - 2 - 2 * SQUISH_CONSTANT_3D;
dz_ext1 = dz0 - 2 * SQUISH_CONSTANT_3D;
xsv_ext1 = xsb;
ysv_ext1 = ysb + 2;
zsv_ext1 = zsb;
} else {
dx_ext1 = dx0 - 2 * SQUISH_CONSTANT_3D;
dy_ext1 = dy0 - 2 * SQUISH_CONSTANT_3D;
dz_ext1 = dz0 - 2 - 2 * SQUISH_CONSTANT_3D;
xsv_ext1 = xsb;
ysv_ext1 = ysb;
zsv_ext1 = zsb + 2;
}
} else {//Both closest points on (0,0,0) side
//One of the two extra points is (0,0,0)
dx_ext0 = dx0;
dy_ext0 = dy0;
dz_ext0 = dz0;
xsv_ext0 = xsb;
ysv_ext0 = ysb;
zsv_ext0 = zsb;
//Other extra point is based on the omitted axis.
byte c = (byte)(aPoint | bPoint);
if ((c & 0x01) == 0) {
dx_ext1 = dx0 + 1 - SQUISH_CONSTANT_3D;
dy_ext1 = dy0 - 1 - SQUISH_CONSTANT_3D;
dz_ext1 = dz0 - 1 - SQUISH_CONSTANT_3D;
xsv_ext1 = xsb - 1;
ysv_ext1 = ysb + 1;
zsv_ext1 = zsb + 1;
} else if ((c & 0x02) == 0) {
dx_ext1 = dx0 - 1 - SQUISH_CONSTANT_3D;
dy_ext1 = dy0 + 1 - SQUISH_CONSTANT_3D;
dz_ext1 = dz0 - 1 - SQUISH_CONSTANT_3D;
xsv_ext1 = xsb + 1;
ysv_ext1 = ysb - 1;
zsv_ext1 = zsb + 1;
} else {
dx_ext1 = dx0 - 1 - SQUISH_CONSTANT_3D;
dy_ext1 = dy0 - 1 - SQUISH_CONSTANT_3D;
dz_ext1 = dz0 + 1 - SQUISH_CONSTANT_3D;
xsv_ext1 = xsb + 1;
ysv_ext1 = ysb + 1;
zsv_ext1 = zsb - 1;
}
}
} else { //One point on (0,0,0) side, one point on (1,1,1) side
byte c1, c2;
if (aIsFurtherSide) {
c1 = aPoint;
c2 = bPoint;
} else {
c1 = bPoint;
c2 = aPoint;
}
//One contribution is a permutation of (1,1,-1)
if ((c1 & 0x01) == 0) {
dx_ext0 = dx0 + 1 - SQUISH_CONSTANT_3D;
dy_ext0 = dy0 - 1 - SQUISH_CONSTANT_3D;
dz_ext0 = dz0 - 1 - SQUISH_CONSTANT_3D;
xsv_ext0 = xsb - 1;
ysv_ext0 = ysb + 1;
zsv_ext0 = zsb + 1;
} else if ((c1 & 0x02) == 0) {
dx_ext0 = dx0 - 1 - SQUISH_CONSTANT_3D;
dy_ext0 = dy0 + 1 - SQUISH_CONSTANT_3D;
dz_ext0 = dz0 - 1 - SQUISH_CONSTANT_3D;
xsv_ext0 = xsb + 1;
ysv_ext0 = ysb - 1;
zsv_ext0 = zsb + 1;
} else {
dx_ext0 = dx0 - 1 - SQUISH_CONSTANT_3D;
dy_ext0 = dy0 - 1 - SQUISH_CONSTANT_3D;
dz_ext0 = dz0 + 1 - SQUISH_CONSTANT_3D;
xsv_ext0 = xsb + 1;
ysv_ext0 = ysb + 1;
zsv_ext0 = zsb - 1;
}
//One contribution is a permutation of (0,0,2)
dx_ext1 = dx0 - 2 * SQUISH_CONSTANT_3D;
dy_ext1 = dy0 - 2 * SQUISH_CONSTANT_3D;
dz_ext1 = dz0 - 2 * SQUISH_CONSTANT_3D;
xsv_ext1 = xsb;
ysv_ext1 = ysb;
zsv_ext1 = zsb;
if ((c2 & 0x01) != 0) {
dx_ext1 -= 2;
xsv_ext1 += 2;
} else if ((c2 & 0x02) != 0) {
dy_ext1 -= 2;
ysv_ext1 += 2;
} else {
dz_ext1 -= 2;
zsv_ext1 += 2;
}
}
//Contribution (1,0,0)
double dx1 = dx0 - 1 - SQUISH_CONSTANT_3D;
double dy1 = dy0 - 0 - SQUISH_CONSTANT_3D;
double dz1 = dz0 - 0 - SQUISH_CONSTANT_3D;
double attn1 = 2 - dx1 * dx1 - dy1 * dy1 - dz1 * dz1;
if (attn1 > 0) {
attn1 *= attn1;
value += attn1 * attn1 * extrapolate(xsb + 1, ysb + 0, zsb + 0, dx1, dy1, dz1);
}
//Contribution (0,1,0)
double dx2 = dx0 - 0 - SQUISH_CONSTANT_3D;
double dy2 = dy0 - 1 - SQUISH_CONSTANT_3D;
double dz2 = dz1;
double attn2 = 2 - dx2 * dx2 - dy2 * dy2 - dz2 * dz2;
if (attn2 > 0) {
attn2 *= attn2;
value += attn2 * attn2 * extrapolate(xsb + 0, ysb + 1, zsb + 0, dx2, dy2, dz2);
}
//Contribution (0,0,1)
double dx3 = dx2;
double dy3 = dy1;
double dz3 = dz0 - 1 - SQUISH_CONSTANT_3D;
double attn3 = 2 - dx3 * dx3 - dy3 * dy3 - dz3 * dz3;
if (attn3 > 0) {
attn3 *= attn3;
value += attn3 * attn3 * extrapolate(xsb + 0, ysb + 0, zsb + 1, dx3, dy3, dz3);
}
//Contribution (1,1,0)
double dx4 = dx0 - 1 - 2 * SQUISH_CONSTANT_3D;
double dy4 = dy0 - 1 - 2 * SQUISH_CONSTANT_3D;
double dz4 = dz0 - 0 - 2 * SQUISH_CONSTANT_3D;
double attn4 = 2 - dx4 * dx4 - dy4 * dy4 - dz4 * dz4;
if (attn4 > 0) {
attn4 *= attn4;
value += attn4 * attn4 * extrapolate(xsb + 1, ysb + 1, zsb + 0, dx4, dy4, dz4);
}
//Contribution (1,0,1)
double dx5 = dx4;
double dy5 = dy0 - 0 - 2 * SQUISH_CONSTANT_3D;
double dz5 = dz0 - 1 - 2 * SQUISH_CONSTANT_3D;
double attn5 = 2 - dx5 * dx5 - dy5 * dy5 - dz5 * dz5;
if (attn5 > 0) {
attn5 *= attn5;
value += attn5 * attn5 * extrapolate(xsb + 1, ysb + 0, zsb + 1, dx5, dy5, dz5);
}
//Contribution (0,1,1)
double dx6 = dx0 - 0 - 2 * SQUISH_CONSTANT_3D;
double dy6 = dy4;
double dz6 = dz5;
double attn6 = 2 - dx6 * dx6 - dy6 * dy6 - dz6 * dz6;
if (attn6 > 0) {
attn6 *= attn6;
value += attn6 * attn6 * extrapolate(xsb + 0, ysb + 1, zsb + 1, dx6, dy6, dz6);
}
}
//First extra vertex
double attn_ext0 = 2 - dx_ext0 * dx_ext0 - dy_ext0 * dy_ext0 - dz_ext0 * dz_ext0;
if (attn_ext0 > 0)
{
attn_ext0 *= attn_ext0;
value += attn_ext0 * attn_ext0 * extrapolate(xsv_ext0, ysv_ext0, zsv_ext0, dx_ext0, dy_ext0, dz_ext0);
}
//Second extra vertex
double attn_ext1 = 2 - dx_ext1 * dx_ext1 - dy_ext1 * dy_ext1 - dz_ext1 * dz_ext1;
if (attn_ext1 > 0)
{
attn_ext1 *= attn_ext1;
value += attn_ext1 * attn_ext1 * extrapolate(xsv_ext1, ysv_ext1, zsv_ext1, dx_ext1, dy_ext1, dz_ext1);
}
return value / NORM_CONSTANT_3D;
}
//4D OpenSimplex (Simplectic) Noise.
public double eval(double x, double y, double z, double w) {
//Place input coordinates on simplectic honeycomb.
double stretchOffset = (x + y + z + w) * STRETCH_CONSTANT_4D;
double xs = x + stretchOffset;
double ys = y + stretchOffset;
double zs = z + stretchOffset;
double ws = w + stretchOffset;
//Floor to get simplectic honeycomb coordinates of rhombo-hypercube super-cell origin.
int xsb = fastFloor(xs);
int ysb = fastFloor(ys);
int zsb = fastFloor(zs);
int wsb = fastFloor(ws);
//Skew out to get actual coordinates of stretched rhombo-hypercube origin. We'll need these later.
double squishOffset = (xsb + ysb + zsb + wsb) * SQUISH_CONSTANT_4D;
double xb = xsb + squishOffset;
double yb = ysb + squishOffset;
double zb = zsb + squishOffset;
double wb = wsb + squishOffset;
//Compute simplectic honeycomb coordinates relative to rhombo-hypercube origin.
double xins = xs - xsb;
double yins = ys - ysb;
double zins = zs - zsb;
double wins = ws - wsb;
//Sum those together to get a value that determines which region we're in.
double inSum = xins + yins + zins + wins;
//Positions relative to origin point.
double dx0 = x - xb;
double dy0 = y - yb;
double dz0 = z - zb;
double dw0 = w - wb;
//We'll be defining these inside the next block and using them afterwards.
double dx_ext0, dy_ext0, dz_ext0, dw_ext0;
double dx_ext1, dy_ext1, dz_ext1, dw_ext1;
double dx_ext2, dy_ext2, dz_ext2, dw_ext2;
int xsv_ext0, ysv_ext0, zsv_ext0, wsv_ext0;
int xsv_ext1, ysv_ext1, zsv_ext1, wsv_ext1;
int xsv_ext2, ysv_ext2, zsv_ext2, wsv_ext2;
double value = 0;
if (inSum <= 1) { //We're inside the pentachoron (4-Simplex) at (0,0,0,0)
//Determine which two of (0,0,0,1), (0,0,1,0), (0,1,0,0), (1,0,0,0) are closest.
byte aPoint = 0x01;
double aScore = xins;
byte bPoint = 0x02;
double bScore = yins;
if (aScore >= bScore && zins > bScore) {
bScore = zins;
bPoint = 0x04;
} else if (aScore < bScore && zins > aScore) {
aScore = zins;
aPoint = 0x04;
}
if (aScore >= bScore && wins > bScore) {
bScore = wins;
bPoint = 0x08;
} else if (aScore < bScore && wins > aScore) {
aScore = wins;
aPoint = 0x08;
}
//Now we determine the three lattice points not part of the pentachoron that may contribute.
//This depends on the closest two pentachoron vertices, including (0,0,0,0)
double uins = 1 - inSum;
if (uins > aScore || uins > bScore) { //(0,0,0,0) is one of the closest two pentachoron vertices.
byte c = (bScore > aScore ? bPoint : aPoint); //Our other closest vertex is the closest out of a and b.
if ((c & 0x01) == 0) {
xsv_ext0 = xsb - 1;
xsv_ext1 = xsv_ext2 = xsb;
dx_ext0 = dx0 + 1;
dx_ext1 = dx_ext2 = dx0;
} else {
xsv_ext0 = xsv_ext1 = xsv_ext2 = xsb + 1;
dx_ext0 = dx_ext1 = dx_ext2 = dx0 - 1;
}
if ((c & 0x02) == 0) {
ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb;
dy_ext0 = dy_ext1 = dy_ext2 = dy0;
if ((c & 0x01) == 0x01) {
ysv_ext0 -= 1;
dy_ext0 += 1;
} else {
ysv_ext1 -= 1;
dy_ext1 += 1;
}
} else {
ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb + 1;
dy_ext0 = dy_ext1 = dy_ext2 = dy0 - 1;
}
if ((c & 0x04) == 0) {
zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb;
dz_ext0 = dz_ext1 = dz_ext2 = dz0;
if ((c & 0x03) != 0) {
if ((c & 0x03) == 0x03) {
zsv_ext0 -= 1;
dz_ext0 += 1;
} else {
zsv_ext1 -= 1;
dz_ext1 += 1;
}
} else {
zsv_ext2 -= 1;
dz_ext2 += 1;
}
} else {
zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb + 1;
dz_ext0 = dz_ext1 = dz_ext2 = dz0 - 1;
}
if ((c & 0x08) == 0) {
wsv_ext0 = wsv_ext1 = wsb;
wsv_ext2 = wsb - 1;
dw_ext0 = dw_ext1 = dw0;
dw_ext2 = dw0 + 1;
} else {
wsv_ext0 = wsv_ext1 = wsv_ext2 = wsb + 1;
dw_ext0 = dw_ext1 = dw_ext2 = dw0 - 1;
}
} else { //(0,0,0,0) is not one of the closest two pentachoron vertices.
byte c = (byte)(aPoint | bPoint); //Our three extra vertices are determined by the closest two.
if ((c & 0x01) == 0) {
xsv_ext0 = xsv_ext2 = xsb;
xsv_ext1 = xsb - 1;
dx_ext0 = dx0 - 2 * SQUISH_CONSTANT_4D;
dx_ext1 = dx0 + 1 - SQUISH_CONSTANT_4D;
dx_ext2 = dx0 - SQUISH_CONSTANT_4D;
} else {
xsv_ext0 = xsv_ext1 = xsv_ext2 = xsb + 1;
dx_ext0 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D;
dx_ext1 = dx_ext2 = dx0 - 1 - SQUISH_CONSTANT_4D;
}
if ((c & 0x02) == 0) {
ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb;
dy_ext0 = dy0 - 2 * SQUISH_CONSTANT_4D;
dy_ext1 = dy_ext2 = dy0 - SQUISH_CONSTANT_4D;
if ((c & 0x01) == 0x01) {
ysv_ext1 -= 1;
dy_ext1 += 1;
} else {
ysv_ext2 -= 1;
dy_ext2 += 1;
}
} else {
ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb + 1;
dy_ext0 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D;
dy_ext1 = dy_ext2 = dy0 - 1 - SQUISH_CONSTANT_4D;
}
if ((c & 0x04) == 0) {
zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb;
dz_ext0 = dz0 - 2 * SQUISH_CONSTANT_4D;
dz_ext1 = dz_ext2 = dz0 - SQUISH_CONSTANT_4D;
if ((c & 0x03) == 0x03) {
zsv_ext1 -= 1;
dz_ext1 += 1;
} else {
zsv_ext2 -= 1;
dz_ext2 += 1;
}
} else {
zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb + 1;
dz_ext0 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D;
dz_ext1 = dz_ext2 = dz0 - 1 - SQUISH_CONSTANT_4D;
}
if ((c & 0x08) == 0) {
wsv_ext0 = wsv_ext1 = wsb;
wsv_ext2 = wsb - 1;
dw_ext0 = dw0 - 2 * SQUISH_CONSTANT_4D;
dw_ext1 = dw0 - SQUISH_CONSTANT_4D;
dw_ext2 = dw0 + 1 - SQUISH_CONSTANT_4D;
} else {
wsv_ext0 = wsv_ext1 = wsv_ext2 = wsb + 1;
dw_ext0 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D;
dw_ext1 = dw_ext2 = dw0 - 1 - SQUISH_CONSTANT_4D;
}
}
//Contribution (0,0,0,0)
double attn0 = 2 - dx0 * dx0 - dy0 * dy0 - dz0 * dz0 - dw0 * dw0;
if (attn0 > 0) {
attn0 *= attn0;
value += attn0 * attn0 * extrapolate(xsb + 0, ysb + 0, zsb + 0, wsb + 0, dx0, dy0, dz0, dw0);
}
//Contribution (1,0,0,0)
double dx1 = dx0 - 1 - SQUISH_CONSTANT_4D;
double dy1 = dy0 - 0 - SQUISH_CONSTANT_4D;
double dz1 = dz0 - 0 - SQUISH_CONSTANT_4D;
double dw1 = dw0 - 0 - SQUISH_CONSTANT_4D;
double attn1 = 2 - dx1 * dx1 - dy1 * dy1 - dz1 * dz1 - dw1 * dw1;
if (attn1 > 0) {
attn1 *= attn1;
value += attn1 * attn1 * extrapolate(xsb + 1, ysb + 0, zsb + 0, wsb + 0, dx1, dy1, dz1, dw1);
}
//Contribution (0,1,0,0)
double dx2 = dx0 - 0 - SQUISH_CONSTANT_4D;
double dy2 = dy0 - 1 - SQUISH_CONSTANT_4D;
double dz2 = dz1;
double dw2 = dw1;
double attn2 = 2 - dx2 * dx2 - dy2 * dy2 - dz2 * dz2 - dw2 * dw2;
if (attn2 > 0) {
attn2 *= attn2;
value += attn2 * attn2 * extrapolate(xsb + 0, ysb + 1, zsb + 0, wsb + 0, dx2, dy2, dz2, dw2);
}
//Contribution (0,0,1,0)
double dx3 = dx2;
double dy3 = dy1;
double dz3 = dz0 - 1 - SQUISH_CONSTANT_4D;
double dw3 = dw1;
double attn3 = 2 - dx3 * dx3 - dy3 * dy3 - dz3 * dz3 - dw3 * dw3;
if (attn3 > 0) {
attn3 *= attn3;
value += attn3 * attn3 * extrapolate(xsb + 0, ysb + 0, zsb + 1, wsb + 0, dx3, dy3, dz3, dw3);
}
//Contribution (0,0,0,1)
double dx4 = dx2;
double dy4 = dy1;
double dz4 = dz1;
double dw4 = dw0 - 1 - SQUISH_CONSTANT_4D;
double attn4 = 2 - dx4 * dx4 - dy4 * dy4 - dz4 * dz4 - dw4 * dw4;
if (attn4 > 0) {
attn4 *= attn4;
value += attn4 * attn4 * extrapolate(xsb + 0, ysb + 0, zsb + 0, wsb + 1, dx4, dy4, dz4, dw4);
}
} else if (inSum >= 3) { //We're inside the pentachoron (4-Simplex) at (1,1,1,1)
//Determine which two of (1,1,1,0), (1,1,0,1), (1,0,1,1), (0,1,1,1) are closest.
byte aPoint = 0x0E;
double aScore = xins;
byte bPoint = 0x0D;
double bScore = yins;
if (aScore <= bScore && zins < bScore) {
bScore = zins;
bPoint = 0x0B;
} else if (aScore > bScore && zins < aScore) {
aScore = zins;
aPoint = 0x0B;
}
if (aScore <= bScore && wins < bScore) {
bScore = wins;
bPoint = 0x07;
} else if (aScore > bScore && wins < aScore) {
aScore = wins;
aPoint = 0x07;
}
//Now we determine the three lattice points not part of the pentachoron that may contribute.
//This depends on the closest two pentachoron vertices, including (0,0,0,0)
double uins = 4 - inSum;
if (uins < aScore || uins < bScore) { //(1,1,1,1) is one of the closest two pentachoron vertices.
byte c = (bScore < aScore ? bPoint : aPoint); //Our other closest vertex is the closest out of a and b.
if ((c & 0x01) != 0) {
xsv_ext0 = xsb + 2;
xsv_ext1 = xsv_ext2 = xsb + 1;
dx_ext0 = dx0 - 2 - 4 * SQUISH_CONSTANT_4D;
dx_ext1 = dx_ext2 = dx0 - 1 - 4 * SQUISH_CONSTANT_4D;
} else {
xsv_ext0 = xsv_ext1 = xsv_ext2 = xsb;
dx_ext0 = dx_ext1 = dx_ext2 = dx0 - 4 * SQUISH_CONSTANT_4D;
}
if ((c & 0x02) != 0) {
ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb + 1;
dy_ext0 = dy_ext1 = dy_ext2 = dy0 - 1 - 4 * SQUISH_CONSTANT_4D;
if ((c & 0x01) != 0) {
ysv_ext1 += 1;
dy_ext1 -= 1;
} else {
ysv_ext0 += 1;
dy_ext0 -= 1;
}
} else {
ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb;
dy_ext0 = dy_ext1 = dy_ext2 = dy0 - 4 * SQUISH_CONSTANT_4D;
}
if ((c & 0x04) != 0) {
zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb + 1;
dz_ext0 = dz_ext1 = dz_ext2 = dz0 - 1 - 4 * SQUISH_CONSTANT_4D;
if ((c & 0x03) != 0x03) {
if ((c & 0x03) == 0) {
zsv_ext0 += 1;
dz_ext0 -= 1;
} else {
zsv_ext1 += 1;
dz_ext1 -= 1;
}
} else {
zsv_ext2 += 1;
dz_ext2 -= 1;
}
} else {
zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb;
dz_ext0 = dz_ext1 = dz_ext2 = dz0 - 4 * SQUISH_CONSTANT_4D;
}
if ((c & 0x08) != 0) {
wsv_ext0 = wsv_ext1 = wsb + 1;
wsv_ext2 = wsb + 2;
dw_ext0 = dw_ext1 = dw0 - 1 - 4 * SQUISH_CONSTANT_4D;
dw_ext2 = dw0 - 2 - 4 * SQUISH_CONSTANT_4D;
} else {
wsv_ext0 = wsv_ext1 = wsv_ext2 = wsb;
dw_ext0 = dw_ext1 = dw_ext2 = dw0 - 4 * SQUISH_CONSTANT_4D;
}
} else { //(1,1,1,1) is not one of the closest two pentachoron vertices.
byte c = (byte)(aPoint & bPoint); //Our three extra vertices are determined by the closest two.
if ((c & 0x01) != 0) {
xsv_ext0 = xsv_ext2 = xsb + 1;
xsv_ext1 = xsb + 2;
dx_ext0 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D;
dx_ext1 = dx0 - 2 - 3 * SQUISH_CONSTANT_4D;
dx_ext2 = dx0 - 1 - 3 * SQUISH_CONSTANT_4D;
} else {
xsv_ext0 = xsv_ext1 = xsv_ext2 = xsb;
dx_ext0 = dx0 - 2 * SQUISH_CONSTANT_4D;
dx_ext1 = dx_ext2 = dx0 - 3 * SQUISH_CONSTANT_4D;
}
if ((c & 0x02) != 0) {
ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb + 1;
dy_ext0 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D;
dy_ext1 = dy_ext2 = dy0 - 1 - 3 * SQUISH_CONSTANT_4D;
if ((c & 0x01) != 0) {
ysv_ext2 += 1;
dy_ext2 -= 1;
} else {
ysv_ext1 += 1;
dy_ext1 -= 1;
}
} else {
ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb;
dy_ext0 = dy0 - 2 * SQUISH_CONSTANT_4D;
dy_ext1 = dy_ext2 = dy0 - 3 * SQUISH_CONSTANT_4D;
}
if ((c & 0x04) != 0) {
zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb + 1;
dz_ext0 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D;
dz_ext1 = dz_ext2 = dz0 - 1 - 3 * SQUISH_CONSTANT_4D;
if ((c & 0x03) != 0) {
zsv_ext2 += 1;
dz_ext2 -= 1;
} else {
zsv_ext1 += 1;
dz_ext1 -= 1;
}
} else {
zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb;
dz_ext0 = dz0 - 2 * SQUISH_CONSTANT_4D;
dz_ext1 = dz_ext2 = dz0 - 3 * SQUISH_CONSTANT_4D;
}
if ((c & 0x08) != 0) {
wsv_ext0 = wsv_ext1 = wsb + 1;
wsv_ext2 = wsb + 2;
dw_ext0 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D;
dw_ext1 = dw0 - 1 - 3 * SQUISH_CONSTANT_4D;
dw_ext2 = dw0 - 2 - 3 * SQUISH_CONSTANT_4D;
} else {
wsv_ext0 = wsv_ext1 = wsv_ext2 = wsb;
dw_ext0 = dw0 - 2 * SQUISH_CONSTANT_4D;
dw_ext1 = dw_ext2 = dw0 - 3 * SQUISH_CONSTANT_4D;
}
}
//Contribution (1,1,1,0)
double dx4 = dx0 - 1 - 3 * SQUISH_CONSTANT_4D;
double dy4 = dy0 - 1 - 3 * SQUISH_CONSTANT_4D;
double dz4 = dz0 - 1 - 3 * SQUISH_CONSTANT_4D;
double dw4 = dw0 - 3 * SQUISH_CONSTANT_4D;
double attn4 = 2 - dx4 * dx4 - dy4 * dy4 - dz4 * dz4 - dw4 * dw4;
if (attn4 > 0) {
attn4 *= attn4;
value += attn4 * attn4 * extrapolate(xsb + 1, ysb + 1, zsb + 1, wsb + 0, dx4, dy4, dz4, dw4);
}
//Contribution (1,1,0,1)
double dx3 = dx4;
double dy3 = dy4;
double dz3 = dz0 - 3 * SQUISH_CONSTANT_4D;
double dw3 = dw0 - 1 - 3 * SQUISH_CONSTANT_4D;
double attn3 = 2 - dx3 * dx3 - dy3 * dy3 - dz3 * dz3 - dw3 * dw3;
if (attn3 > 0) {
attn3 *= attn3;
value += attn3 * attn3 * extrapolate(xsb + 1, ysb + 1, zsb + 0, wsb + 1, dx3, dy3, dz3, dw3);
}
//Contribution (1,0,1,1)
double dx2 = dx4;
double dy2 = dy0 - 3 * SQUISH_CONSTANT_4D;
double dz2 = dz4;
double dw2 = dw3;
double attn2 = 2 - dx2 * dx2 - dy2 * dy2 - dz2 * dz2 - dw2 * dw2;
if (attn2 > 0) {
attn2 *= attn2;
value += attn2 * attn2 * extrapolate(xsb + 1, ysb + 0, zsb + 1, wsb + 1, dx2, dy2, dz2, dw2);
}
//Contribution (0,1,1,1)
double dx1 = dx0 - 3 * SQUISH_CONSTANT_4D;
double dz1 = dz4;
double dy1 = dy4;
double dw1 = dw3;
double attn1 = 2 - dx1 * dx1 - dy1 * dy1 - dz1 * dz1 - dw1 * dw1;
if (attn1 > 0) {
attn1 *= attn1;
value += attn1 * attn1 * extrapolate(xsb + 0, ysb + 1, zsb + 1, wsb + 1, dx1, dy1, dz1, dw1);
}
//Contribution (1,1,1,1)
dx0 = dx0 - 1 - 4 * SQUISH_CONSTANT_4D;
dy0 = dy0 - 1 - 4 * SQUISH_CONSTANT_4D;
dz0 = dz0 - 1 - 4 * SQUISH_CONSTANT_4D;
dw0 = dw0 - 1 - 4 * SQUISH_CONSTANT_4D;
double attn0 = 2 - dx0 * dx0 - dy0 * dy0 - dz0 * dz0 - dw0 * dw0;
if (attn0 > 0) {
attn0 *= attn0;
value += attn0 * attn0 * extrapolate(xsb + 1, ysb + 1, zsb + 1, wsb + 1, dx0, dy0, dz0, dw0);
}
} else if (inSum <= 2) { //We're inside the first dispentachoron (Rectified 4-Simplex)
double aScore;
byte aPoint;
bool aIsBiggerSide = true;
double bScore;
byte bPoint;
bool bIsBiggerSide = true;
//Decide between (1,1,0,0) and (0,0,1,1)
if (xins + yins > zins + wins) {
aScore = xins + yins;
aPoint = 0x03;
} else {
aScore = zins + wins;
aPoint = 0x0C;
}
//Decide between (1,0,1,0) and (0,1,0,1)
if (xins + zins > yins + wins) {
bScore = xins + zins;
bPoint = 0x05;
} else {
bScore = yins + wins;
bPoint = 0x0A;
}
//Closer between (1,0,0,1) and (0,1,1,0) will replace the further of a and b, if closer.
if (xins + wins > yins + zins) {
double score = xins + wins;
if (aScore >= bScore && score > bScore) {
bScore = score;
bPoint = 0x09;
} else if (aScore < bScore && score > aScore) {
aScore = score;
aPoint = 0x09;
}
} else {
double score = yins + zins;
if (aScore >= bScore && score > bScore) {
bScore = score;
bPoint = 0x06;
} else if (aScore < bScore && score > aScore) {
aScore = score;
aPoint = 0x06;
}
}
//Decide if (1,0,0,0) is closer.
double p1 = 2 - inSum + xins;
if (aScore >= bScore && p1 > bScore) {
bScore = p1;
bPoint = 0x01;
bIsBiggerSide = false;
} else if (aScore < bScore && p1 > aScore) {
aScore = p1;
aPoint = 0x01;
aIsBiggerSide = false;
}
//Decide if (0,1,0,0) is closer.
double p2 = 2 - inSum + yins;
if (aScore >= bScore && p2 > bScore) {
bScore = p2;
bPoint = 0x02;
bIsBiggerSide = false;
} else if (aScore < bScore && p2 > aScore) {
aScore = p2;
aPoint = 0x02;
aIsBiggerSide = false;
}
//Decide if (0,0,1,0) is closer.
double p3 = 2 - inSum + zins;
if (aScore >= bScore && p3 > bScore) {
bScore = p3;
bPoint = 0x04;
bIsBiggerSide = false;
} else if (aScore < bScore && p3 > aScore) {
aScore = p3;
aPoint = 0x04;
aIsBiggerSide = false;
}
//Decide if (0,0,0,1) is closer.
double p4 = 2 - inSum + wins;
if (aScore >= bScore && p4 > bScore) {
bScore = p4;
bPoint = 0x08;
bIsBiggerSide = false;
} else if (aScore < bScore && p4 > aScore) {
aScore = p4;
aPoint = 0x08;
aIsBiggerSide = false;
}
//Where each of the two closest points are determines how the extra three vertices are calculated.
if (aIsBiggerSide == bIsBiggerSide) {
if (aIsBiggerSide) { //Both closest points on the bigger side
byte c1 = (byte)(aPoint | bPoint);
byte c2 = (byte)(aPoint & bPoint);
if ((c1 & 0x01) == 0) {
xsv_ext0 = xsb;
xsv_ext1 = xsb - 1;
dx_ext0 = dx0 - 3 * SQUISH_CONSTANT_4D;
dx_ext1 = dx0 + 1 - 2 * SQUISH_CONSTANT_4D;
} else {
xsv_ext0 = xsv_ext1 = xsb + 1;
dx_ext0 = dx0 - 1 - 3 * SQUISH_CONSTANT_4D;
dx_ext1 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D;
}
if ((c1 & 0x02) == 0) {
ysv_ext0 = ysb;
ysv_ext1 = ysb - 1;
dy_ext0 = dy0 - 3 * SQUISH_CONSTANT_4D;
dy_ext1 = dy0 + 1 - 2 * SQUISH_CONSTANT_4D;
} else {
ysv_ext0 = ysv_ext1 = ysb + 1;
dy_ext0 = dy0 - 1 - 3 * SQUISH_CONSTANT_4D;
dy_ext1 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D;
}
if ((c1 & 0x04) == 0) {
zsv_ext0 = zsb;
zsv_ext1 = zsb - 1;
dz_ext0 = dz0 - 3 * SQUISH_CONSTANT_4D;
dz_ext1 = dz0 + 1 - 2 * SQUISH_CONSTANT_4D;
} else {
zsv_ext0 = zsv_ext1 = zsb + 1;
dz_ext0 = dz0 - 1 - 3 * SQUISH_CONSTANT_4D;
dz_ext1 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D;
}
if ((c1 & 0x08) == 0) {
wsv_ext0 = wsb;
wsv_ext1 = wsb - 1;
dw_ext0 = dw0 - 3 * SQUISH_CONSTANT_4D;
dw_ext1 = dw0 + 1 - 2 * SQUISH_CONSTANT_4D;
} else {
wsv_ext0 = wsv_ext1 = wsb + 1;
dw_ext0 = dw0 - 1 - 3 * SQUISH_CONSTANT_4D;
dw_ext1 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D;
}
//One combination is a permutation of (0,0,0,2) based on c2
xsv_ext2 = xsb;
ysv_ext2 = ysb;
zsv_ext2 = zsb;
wsv_ext2 = wsb;
dx_ext2 = dx0 - 2 * SQUISH_CONSTANT_4D;
dy_ext2 = dy0 - 2 * SQUISH_CONSTANT_4D;
dz_ext2 = dz0 - 2 * SQUISH_CONSTANT_4D;
dw_ext2 = dw0 - 2 * SQUISH_CONSTANT_4D;
if ((c2 & 0x01) != 0) {
xsv_ext2 += 2;
dx_ext2 -= 2;
} else if ((c2 & 0x02) != 0) {
ysv_ext2 += 2;
dy_ext2 -= 2;
} else if ((c2 & 0x04) != 0) {
zsv_ext2 += 2;
dz_ext2 -= 2;
} else {
wsv_ext2 += 2;
dw_ext2 -= 2;
}
} else { //Both closest points on the smaller side
//One of the two extra points is (0,0,0,0)
xsv_ext2 = xsb;
ysv_ext2 = ysb;
zsv_ext2 = zsb;
wsv_ext2 = wsb;
dx_ext2 = dx0;
dy_ext2 = dy0;
dz_ext2 = dz0;
dw_ext2 = dw0;
//Other two points are based on the omitted axes.
byte c = (byte)(aPoint | bPoint);
if ((c & 0x01) == 0) {
xsv_ext0 = xsb - 1;
xsv_ext1 = xsb;
dx_ext0 = dx0 + 1 - SQUISH_CONSTANT_4D;
dx_ext1 = dx0 - SQUISH_CONSTANT_4D;
} else {
xsv_ext0 = xsv_ext1 = xsb + 1;
dx_ext0 = dx_ext1 = dx0 - 1 - SQUISH_CONSTANT_4D;
}
if ((c & 0x02) == 0) {
ysv_ext0 = ysv_ext1 = ysb;
dy_ext0 = dy_ext1 = dy0 - SQUISH_CONSTANT_4D;
if ((c & 0x01) == 0x01)
{
ysv_ext0 -= 1;
dy_ext0 += 1;
} else {
ysv_ext1 -= 1;
dy_ext1 += 1;
}
} else {
ysv_ext0 = ysv_ext1 = ysb + 1;
dy_ext0 = dy_ext1 = dy0 - 1 - SQUISH_CONSTANT_4D;
}
if ((c & 0x04) == 0) {
zsv_ext0 = zsv_ext1 = zsb;
dz_ext0 = dz_ext1 = dz0 - SQUISH_CONSTANT_4D;
if ((c & 0x03) == 0x03)
{
zsv_ext0 -= 1;
dz_ext0 += 1;
} else {
zsv_ext1 -= 1;
dz_ext1 += 1;
}
} else {
zsv_ext0 = zsv_ext1 = zsb + 1;
dz_ext0 = dz_ext1 = dz0 - 1 - SQUISH_CONSTANT_4D;
}
if ((c & 0x08) == 0)
{
wsv_ext0 = wsb;
wsv_ext1 = wsb - 1;
dw_ext0 = dw0 - SQUISH_CONSTANT_4D;
dw_ext1 = dw0 + 1 - SQUISH_CONSTANT_4D;
} else {
wsv_ext0 = wsv_ext1 = wsb + 1;
dw_ext0 = dw_ext1 = dw0 - 1 - SQUISH_CONSTANT_4D;
}
}
} else { //One point on each "side"
byte c1, c2;
if (aIsBiggerSide) {
c1 = aPoint;
c2 = bPoint;
} else {
c1 = bPoint;
c2 = aPoint;
}
//Two contributions are the bigger-sided point with each 0 replaced with -1.
if ((c1 & 0x01) == 0) {
xsv_ext0 = xsb - 1;
xsv_ext1 = xsb;
dx_ext0 = dx0 + 1 - SQUISH_CONSTANT_4D;
dx_ext1 = dx0 - SQUISH_CONSTANT_4D;
} else {
xsv_ext0 = xsv_ext1 = xsb + 1;
dx_ext0 = dx_ext1 = dx0 - 1 - SQUISH_CONSTANT_4D;
}
if ((c1 & 0x02) == 0) {
ysv_ext0 = ysv_ext1 = ysb;
dy_ext0 = dy_ext1 = dy0 - SQUISH_CONSTANT_4D;
if ((c1 & 0x01) == 0x01) {
ysv_ext0 -= 1;
dy_ext0 += 1;
} else {
ysv_ext1 -= 1;
dy_ext1 += 1;
}
} else {
ysv_ext0 = ysv_ext1 = ysb + 1;
dy_ext0 = dy_ext1 = dy0 - 1 - SQUISH_CONSTANT_4D;
}
if ((c1 & 0x04) == 0) {
zsv_ext0 = zsv_ext1 = zsb;
dz_ext0 = dz_ext1 = dz0 - SQUISH_CONSTANT_4D;
if ((c1 & 0x03) == 0x03) {
zsv_ext0 -= 1;
dz_ext0 += 1;
} else {
zsv_ext1 -= 1;
dz_ext1 += 1;
}
} else {
zsv_ext0 = zsv_ext1 = zsb + 1;
dz_ext0 = dz_ext1 = dz0 - 1 - SQUISH_CONSTANT_4D;
}
if ((c1 & 0x08) == 0) {
wsv_ext0 = wsb;
wsv_ext1 = wsb - 1;
dw_ext0 = dw0 - SQUISH_CONSTANT_4D;
dw_ext1 = dw0 + 1 - SQUISH_CONSTANT_4D;
} else {
wsv_ext0 = wsv_ext1 = wsb + 1;
dw_ext0 = dw_ext1 = dw0 - 1 - SQUISH_CONSTANT_4D;
}
//One contribution is a permutation of (0,0,0,2) based on the smaller-sided point
xsv_ext2 = xsb;
ysv_ext2 = ysb;
zsv_ext2 = zsb;
wsv_ext2 = wsb;
dx_ext2 = dx0 - 2 * SQUISH_CONSTANT_4D;
dy_ext2 = dy0 - 2 * SQUISH_CONSTANT_4D;
dz_ext2 = dz0 - 2 * SQUISH_CONSTANT_4D;
dw_ext2 = dw0 - 2 * SQUISH_CONSTANT_4D;
if ((c2 & 0x01) != 0) {
xsv_ext2 += 2;
dx_ext2 -= 2;
} else if ((c2 & 0x02) != 0) {
ysv_ext2 += 2;
dy_ext2 -= 2;
} else if ((c2 & 0x04) != 0) {
zsv_ext2 += 2;
dz_ext2 -= 2;
} else {
wsv_ext2 += 2;
dw_ext2 -= 2;
}
}
//Contribution (1,0,0,0)
double dx1 = dx0 - 1 - SQUISH_CONSTANT_4D;
double dy1 = dy0 - 0 - SQUISH_CONSTANT_4D;
double dz1 = dz0 - 0 - SQUISH_CONSTANT_4D;
double dw1 = dw0 - 0 - SQUISH_CONSTANT_4D;
double attn1 = 2 - dx1 * dx1 - dy1 * dy1 - dz1 * dz1 - dw1 * dw1;
if (attn1 > 0) {
attn1 *= attn1;
value += attn1 * attn1 * extrapolate(xsb + 1, ysb + 0, zsb + 0, wsb + 0, dx1, dy1, dz1, dw1);
}
//Contribution (0,1,0,0)
double dx2 = dx0 - 0 - SQUISH_CONSTANT_4D;
double dy2 = dy0 - 1 - SQUISH_CONSTANT_4D;
double dz2 = dz1;
double dw2 = dw1;
double attn2 = 2 - dx2 * dx2 - dy2 * dy2 - dz2 * dz2 - dw2 * dw2;
if (attn2 > 0) {
attn2 *= attn2;
value += attn2 * attn2 * extrapolate(xsb + 0, ysb + 1, zsb + 0, wsb + 0, dx2, dy2, dz2, dw2);
}
//Contribution (0,0,1,0)
double dx3 = dx2;
double dy3 = dy1;
double dz3 = dz0 - 1 - SQUISH_CONSTANT_4D;
double dw3 = dw1;
double attn3 = 2 - dx3 * dx3 - dy3 * dy3 - dz3 * dz3 - dw3 * dw3;
if (attn3 > 0) {
attn3 *= attn3;
value += attn3 * attn3 * extrapolate(xsb + 0, ysb + 0, zsb + 1, wsb + 0, dx3, dy3, dz3, dw3);
}
//Contribution (0,0,0,1)
double dx4 = dx2;
double dy4 = dy1;
double dz4 = dz1;
double dw4 = dw0 - 1 - SQUISH_CONSTANT_4D;
double attn4 = 2 - dx4 * dx4 - dy4 * dy4 - dz4 * dz4 - dw4 * dw4;
if (attn4 > 0) {
attn4 *= attn4;
value += attn4 * attn4 * extrapolate(xsb + 0, ysb + 0, zsb + 0, wsb + 1, dx4, dy4, dz4, dw4);
}
//Contribution (1,1,0,0)
double dx5 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D;
double dy5 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D;
double dz5 = dz0 - 0 - 2 * SQUISH_CONSTANT_4D;
double dw5 = dw0 - 0 - 2 * SQUISH_CONSTANT_4D;
double attn5 = 2 - dx5 * dx5 - dy5 * dy5 - dz5 * dz5 - dw5 * dw5;
if (attn5 > 0) {
attn5 *= attn5;
value += attn5 * attn5 * extrapolate(xsb + 1, ysb + 1, zsb + 0, wsb + 0, dx5, dy5, dz5, dw5);
}
//Contribution (1,0,1,0)
double dx6 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D;
double dy6 = dy0 - 0 - 2 * SQUISH_CONSTANT_4D;
double dz6 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D;
double dw6 = dw0 - 0 - 2 * SQUISH_CONSTANT_4D;
double attn6 = 2 - dx6 * dx6 - dy6 * dy6 - dz6 * dz6 - dw6 * dw6;
if (attn6 > 0) {
attn6 *= attn6;
value += attn6 * attn6 * extrapolate(xsb + 1, ysb + 0, zsb + 1, wsb + 0, dx6, dy6, dz6, dw6);
}
//Contribution (1,0,0,1)
double dx7 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D;
double dy7 = dy0 - 0 - 2 * SQUISH_CONSTANT_4D;
double dz7 = dz0 - 0 - 2 * SQUISH_CONSTANT_4D;
double dw7 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D;
double attn7 = 2 - dx7 * dx7 - dy7 * dy7 - dz7 * dz7 - dw7 * dw7;
if (attn7 > 0) {
attn7 *= attn7;
value += attn7 * attn7 * extrapolate(xsb + 1, ysb + 0, zsb + 0, wsb + 1, dx7, dy7, dz7, dw7);
}
//Contribution (0,1,1,0)
double dx8 = dx0 - 0 - 2 * SQUISH_CONSTANT_4D;
double dy8 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D;
double dz8 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D;
double dw8 = dw0 - 0 - 2 * SQUISH_CONSTANT_4D;
double attn8 = 2 - dx8 * dx8 - dy8 * dy8 - dz8 * dz8 - dw8 * dw8;
if (attn8 > 0) {
attn8 *= attn8;
value += attn8 * attn8 * extrapolate(xsb + 0, ysb + 1, zsb + 1, wsb + 0, dx8, dy8, dz8, dw8);
}
//Contribution (0,1,0,1)
double dx9 = dx0 - 0 - 2 * SQUISH_CONSTANT_4D;
double dy9 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D;
double dz9 = dz0 - 0 - 2 * SQUISH_CONSTANT_4D;
double dw9 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D;
double attn9 = 2 - dx9 * dx9 - dy9 * dy9 - dz9 * dz9 - dw9 * dw9;
if (attn9 > 0) {
attn9 *= attn9;
value += attn9 * attn9 * extrapolate(xsb + 0, ysb + 1, zsb + 0, wsb + 1, dx9, dy9, dz9, dw9);
}
//Contribution (0,0,1,1)
double dx10 = dx0 - 0 - 2 * SQUISH_CONSTANT_4D;
double dy10 = dy0 - 0 - 2 * SQUISH_CONSTANT_4D;
double dz10 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D;
double dw10 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D;
double attn10 = 2 - dx10 * dx10 - dy10 * dy10 - dz10 * dz10 - dw10 * dw10;
if (attn10 > 0) {
attn10 *= attn10;
value += attn10 * attn10 * extrapolate(xsb + 0, ysb + 0, zsb + 1, wsb + 1, dx10, dy10, dz10, dw10);
}
} else { //We're inside the second dispentachoron (Rectified 4-Simplex)
double aScore;
byte aPoint;
bool aIsBiggerSide = true;
double bScore;
byte bPoint;
bool bIsBiggerSide = true;
//Decide between (0,0,1,1) and (1,1,0,0)
if (xins + yins < zins + wins) {
aScore = xins + yins;
aPoint = 0x0C;
} else {
aScore = zins + wins;
aPoint = 0x03;
}
//Decide between (0,1,0,1) and (1,0,1,0)
if (xins + zins < yins + wins) {
bScore = xins + zins;
bPoint = 0x0A;
} else {
bScore = yins + wins;
bPoint = 0x05;
}
//Closer between (0,1,1,0) and (1,0,0,1) will replace the further of a and b, if closer.
if (xins + wins < yins + zins) {
double score = xins + wins;
if (aScore <= bScore && score < bScore) {
bScore = score;
bPoint = 0x06;
} else if (aScore > bScore && score < aScore) {
aScore = score;
aPoint = 0x06;
}
} else {
double score = yins + zins;
if (aScore <= bScore && score < bScore) {
bScore = score;
bPoint = 0x09;
} else if (aScore > bScore && score < aScore) {
aScore = score;
aPoint = 0x09;
}
}
//Decide if (0,1,1,1) is closer.
double p1 = 3 - inSum + xins;
if (aScore <= bScore && p1 < bScore) {
bScore = p1;
bPoint = 0x0E;
bIsBiggerSide = false;
} else if (aScore > bScore && p1 < aScore) {
aScore = p1;
aPoint = 0x0E;
aIsBiggerSide = false;
}
//Decide if (1,0,1,1) is closer.
double p2 = 3 - inSum + yins;
if (aScore <= bScore && p2 < bScore) {
bScore = p2;
bPoint = 0x0D;
bIsBiggerSide = false;
} else if (aScore > bScore && p2 < aScore) {
aScore = p2;
aPoint = 0x0D;
aIsBiggerSide = false;
}
//Decide if (1,1,0,1) is closer.
double p3 = 3 - inSum + zins;
if (aScore <= bScore && p3 < bScore) {
bScore = p3;
bPoint = 0x0B;
bIsBiggerSide = false;
} else if (aScore > bScore && p3 < aScore) {
aScore = p3;
aPoint = 0x0B;
aIsBiggerSide = false;
}
//Decide if (1,1,1,0) is closer.
double p4 = 3 - inSum + wins;
if (aScore <= bScore && p4 < bScore) {
bScore = p4;
bPoint = 0x07;
bIsBiggerSide = false;
} else if (aScore > bScore && p4 < aScore) {
aScore = p4;
aPoint = 0x07;
aIsBiggerSide = false;
}
//Where each of the two closest points are determines how the extra three vertices are calculated.
if (aIsBiggerSide == bIsBiggerSide) {
if (aIsBiggerSide) { //Both closest points on the bigger side
byte c1 = (byte)(aPoint & bPoint);
byte c2 = (byte)(aPoint | bPoint);
//Two contributions are permutations of (0,0,0,1) and (0,0,0,2) based on c1
xsv_ext0 = xsv_ext1 = xsb;
ysv_ext0 = ysv_ext1 = ysb;
zsv_ext0 = zsv_ext1 = zsb;
wsv_ext0 = wsv_ext1 = wsb;
dx_ext0 = dx0 - SQUISH_CONSTANT_4D;
dy_ext0 = dy0 - SQUISH_CONSTANT_4D;
dz_ext0 = dz0 - SQUISH_CONSTANT_4D;
dw_ext0 = dw0 - SQUISH_CONSTANT_4D;
dx_ext1 = dx0 - 2 * SQUISH_CONSTANT_4D;
dy_ext1 = dy0 - 2 * SQUISH_CONSTANT_4D;
dz_ext1 = dz0 - 2 * SQUISH_CONSTANT_4D;
dw_ext1 = dw0 - 2 * SQUISH_CONSTANT_4D;
if ((c1 & 0x01) != 0) {
xsv_ext0 += 1;
dx_ext0 -= 1;
xsv_ext1 += 2;
dx_ext1 -= 2;
} else if ((c1 & 0x02) != 0) {
ysv_ext0 += 1;
dy_ext0 -= 1;
ysv_ext1 += 2;
dy_ext1 -= 2;
} else if ((c1 & 0x04) != 0) {
zsv_ext0 += 1;
dz_ext0 -= 1;
zsv_ext1 += 2;
dz_ext1 -= 2;
} else {
wsv_ext0 += 1;
dw_ext0 -= 1;
wsv_ext1 += 2;
dw_ext1 -= 2;
}
//One contribution is a permutation of (1,1,1,-1) based on c2
xsv_ext2 = xsb + 1;
ysv_ext2 = ysb + 1;
zsv_ext2 = zsb + 1;
wsv_ext2 = wsb + 1;
dx_ext2 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D;
dy_ext2 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D;
dz_ext2 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D;
dw_ext2 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D;
if ((c2 & 0x01) == 0) {
xsv_ext2 -= 2;
dx_ext2 += 2;
} else if ((c2 & 0x02) == 0) {
ysv_ext2 -= 2;
dy_ext2 += 2;
} else if ((c2 & 0x04) == 0) {
zsv_ext2 -= 2;
dz_ext2 += 2;
} else {
wsv_ext2 -= 2;
dw_ext2 += 2;
}
} else { //Both closest points on the smaller side
//One of the two extra points is (1,1,1,1)
xsv_ext2 = xsb + 1;
ysv_ext2 = ysb + 1;
zsv_ext2 = zsb + 1;
wsv_ext2 = wsb + 1;
dx_ext2 = dx0 - 1 - 4 * SQUISH_CONSTANT_4D;
dy_ext2 = dy0 - 1 - 4 * SQUISH_CONSTANT_4D;
dz_ext2 = dz0 - 1 - 4 * SQUISH_CONSTANT_4D;
dw_ext2 = dw0 - 1 - 4 * SQUISH_CONSTANT_4D;
//Other two points are based on the shared axes.
byte c = (byte)(aPoint & bPoint);
if ((c & 0x01) != 0) {
xsv_ext0 = xsb + 2;
xsv_ext1 = xsb + 1;
dx_ext0 = dx0 - 2 - 3 * SQUISH_CONSTANT_4D;
dx_ext1 = dx0 - 1 - 3 * SQUISH_CONSTANT_4D;
} else {
xsv_ext0 = xsv_ext1 = xsb;
dx_ext0 = dx_ext1 = dx0 - 3 * SQUISH_CONSTANT_4D;
}
if ((c & 0x02) != 0) {
ysv_ext0 = ysv_ext1 = ysb + 1;
dy_ext0 = dy_ext1 = dy0 - 1 - 3 * SQUISH_CONSTANT_4D;
if ((c & 0x01) == 0)
{
ysv_ext0 += 1;
dy_ext0 -= 1;
} else {
ysv_ext1 += 1;
dy_ext1 -= 1;
}
} else {
ysv_ext0 = ysv_ext1 = ysb;
dy_ext0 = dy_ext1 = dy0 - 3 * SQUISH_CONSTANT_4D;
}
if ((c & 0x04) != 0) {
zsv_ext0 = zsv_ext1 = zsb + 1;
dz_ext0 = dz_ext1 = dz0 - 1 - 3 * SQUISH_CONSTANT_4D;
if ((c & 0x03) == 0)
{
zsv_ext0 += 1;
dz_ext0 -= 1;
} else {
zsv_ext1 += 1;
dz_ext1 -= 1;
}
} else {
zsv_ext0 = zsv_ext1 = zsb;
dz_ext0 = dz_ext1 = dz0 - 3 * SQUISH_CONSTANT_4D;
}
if ((c & 0x08) != 0)
{
wsv_ext0 = wsb + 1;
wsv_ext1 = wsb + 2;
dw_ext0 = dw0 - 1 - 3 * SQUISH_CONSTANT_4D;
dw_ext1 = dw0 - 2 - 3 * SQUISH_CONSTANT_4D;
} else {
wsv_ext0 = wsv_ext1 = wsb;
dw_ext0 = dw_ext1 = dw0 - 3 * SQUISH_CONSTANT_4D;
}
}
} else { //One point on each "side"
byte c1, c2;
if (aIsBiggerSide) {
c1 = aPoint;
c2 = bPoint;
} else {
c1 = bPoint;
c2 = aPoint;
}
//Two contributions are the bigger-sided point with each 1 replaced with 2.
if ((c1 & 0x01) != 0) {
xsv_ext0 = xsb + 2;
xsv_ext1 = xsb + 1;
dx_ext0 = dx0 - 2 - 3 * SQUISH_CONSTANT_4D;
dx_ext1 = dx0 - 1 - 3 * SQUISH_CONSTANT_4D;
} else {
xsv_ext0 = xsv_ext1 = xsb;
dx_ext0 = dx_ext1 = dx0 - 3 * SQUISH_CONSTANT_4D;
}
if ((c1 & 0x02) != 0) {
ysv_ext0 = ysv_ext1 = ysb + 1;
dy_ext0 = dy_ext1 = dy0 - 1 - 3 * SQUISH_CONSTANT_4D;
if ((c1 & 0x01) == 0) {
ysv_ext0 += 1;
dy_ext0 -= 1;
} else {
ysv_ext1 += 1;
dy_ext1 -= 1;
}
} else {
ysv_ext0 = ysv_ext1 = ysb;
dy_ext0 = dy_ext1 = dy0 - 3 * SQUISH_CONSTANT_4D;
}
if ((c1 & 0x04) != 0) {
zsv_ext0 = zsv_ext1 = zsb + 1;
dz_ext0 = dz_ext1 = dz0 - 1 - 3 * SQUISH_CONSTANT_4D;
if ((c1 & 0x03) == 0) {
zsv_ext0 += 1;
dz_ext0 -= 1;
} else {
zsv_ext1 += 1;
dz_ext1 -= 1;
}
} else {
zsv_ext0 = zsv_ext1 = zsb;
dz_ext0 = dz_ext1 = dz0 - 3 * SQUISH_CONSTANT_4D;
}
if ((c1 & 0x08) != 0) {
wsv_ext0 = wsb + 1;
wsv_ext1 = wsb + 2;
dw_ext0 = dw0 - 1 - 3 * SQUISH_CONSTANT_4D;
dw_ext1 = dw0 - 2 - 3 * SQUISH_CONSTANT_4D;
} else {
wsv_ext0 = wsv_ext1 = wsb;
dw_ext0 = dw_ext1 = dw0 - 3 * SQUISH_CONSTANT_4D;
}
//One contribution is a permutation of (1,1,1,-1) based on the smaller-sided point
xsv_ext2 = xsb + 1;
ysv_ext2 = ysb + 1;
zsv_ext2 = zsb + 1;
wsv_ext2 = wsb + 1;
dx_ext2 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D;
dy_ext2 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D;
dz_ext2 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D;
dw_ext2 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D;
if ((c2 & 0x01) == 0) {
xsv_ext2 -= 2;
dx_ext2 += 2;
} else if ((c2 & 0x02) == 0) {
ysv_ext2 -= 2;
dy_ext2 += 2;
} else if ((c2 & 0x04) == 0) {
zsv_ext2 -= 2;
dz_ext2 += 2;
} else {
wsv_ext2 -= 2;
dw_ext2 += 2;
}
}
//Contribution (1,1,1,0)
double dx4 = dx0 - 1 - 3 * SQUISH_CONSTANT_4D;
double dy4 = dy0 - 1 - 3 * SQUISH_CONSTANT_4D;
double dz4 = dz0 - 1 - 3 * SQUISH_CONSTANT_4D;
double dw4 = dw0 - 3 * SQUISH_CONSTANT_4D;
double attn4 = 2 - dx4 * dx4 - dy4 * dy4 - dz4 * dz4 - dw4 * dw4;
if (attn4 > 0) {
attn4 *= attn4;
value += attn4 * attn4 * extrapolate(xsb + 1, ysb + 1, zsb + 1, wsb + 0, dx4, dy4, dz4, dw4);
}
//Contribution (1,1,0,1)
double dx3 = dx4;
double dy3 = dy4;
double dz3 = dz0 - 3 * SQUISH_CONSTANT_4D;
double dw3 = dw0 - 1 - 3 * SQUISH_CONSTANT_4D;
double attn3 = 2 - dx3 * dx3 - dy3 * dy3 - dz3 * dz3 - dw3 * dw3;
if (attn3 > 0) {
attn3 *= attn3;
value += attn3 * attn3 * extrapolate(xsb + 1, ysb + 1, zsb + 0, wsb + 1, dx3, dy3, dz3, dw3);
}
//Contribution (1,0,1,1)
double dx2 = dx4;
double dy2 = dy0 - 3 * SQUISH_CONSTANT_4D;
double dz2 = dz4;
double dw2 = dw3;
double attn2 = 2 - dx2 * dx2 - dy2 * dy2 - dz2 * dz2 - dw2 * dw2;
if (attn2 > 0) {
attn2 *= attn2;
value += attn2 * attn2 * extrapolate(xsb + 1, ysb + 0, zsb + 1, wsb + 1, dx2, dy2, dz2, dw2);
}
//Contribution (0,1,1,1)
double dx1 = dx0 - 3 * SQUISH_CONSTANT_4D;
double dz1 = dz4;
double dy1 = dy4;
double dw1 = dw3;
double attn1 = 2 - dx1 * dx1 - dy1 * dy1 - dz1 * dz1 - dw1 * dw1;
if (attn1 > 0) {
attn1 *= attn1;
value += attn1 * attn1 * extrapolate(xsb + 0, ysb + 1, zsb + 1, wsb + 1, dx1, dy1, dz1, dw1);
}
//Contribution (1,1,0,0)
double dx5 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D;
double dy5 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D;
double dz5 = dz0 - 0 - 2 * SQUISH_CONSTANT_4D;
double dw5 = dw0 - 0 - 2 * SQUISH_CONSTANT_4D;
double attn5 = 2 - dx5 * dx5 - dy5 * dy5 - dz5 * dz5 - dw5 * dw5;
if (attn5 > 0) {
attn5 *= attn5;
value += attn5 * attn5 * extrapolate(xsb + 1, ysb + 1, zsb + 0, wsb + 0, dx5, dy5, dz5, dw5);
}
//Contribution (1,0,1,0)
double dx6 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D;
double dy6 = dy0 - 0 - 2 * SQUISH_CONSTANT_4D;
double dz6 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D;
double dw6 = dw0 - 0 - 2 * SQUISH_CONSTANT_4D;
double attn6 = 2 - dx6 * dx6 - dy6 * dy6 - dz6 * dz6 - dw6 * dw6;
if (attn6 > 0) {
attn6 *= attn6;
value += attn6 * attn6 * extrapolate(xsb + 1, ysb + 0, zsb + 1, wsb + 0, dx6, dy6, dz6, dw6);
}
//Contribution (1,0,0,1)
double dx7 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D;
double dy7 = dy0 - 0 - 2 * SQUISH_CONSTANT_4D;
double dz7 = dz0 - 0 - 2 * SQUISH_CONSTANT_4D;
double dw7 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D;
double attn7 = 2 - dx7 * dx7 - dy7 * dy7 - dz7 * dz7 - dw7 * dw7;
if (attn7 > 0) {
attn7 *= attn7;
value += attn7 * attn7 * extrapolate(xsb + 1, ysb + 0, zsb + 0, wsb + 1, dx7, dy7, dz7, dw7);
}
//Contribution (0,1,1,0)
double dx8 = dx0 - 0 - 2 * SQUISH_CONSTANT_4D;
double dy8 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D;
double dz8 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D;
double dw8 = dw0 - 0 - 2 * SQUISH_CONSTANT_4D;
double attn8 = 2 - dx8 * dx8 - dy8 * dy8 - dz8 * dz8 - dw8 * dw8;
if (attn8 > 0) {
attn8 *= attn8;
value += attn8 * attn8 * extrapolate(xsb + 0, ysb + 1, zsb + 1, wsb + 0, dx8, dy8, dz8, dw8);
}
//Contribution (0,1,0,1)
double dx9 = dx0 - 0 - 2 * SQUISH_CONSTANT_4D;
double dy9 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D;
double dz9 = dz0 - 0 - 2 * SQUISH_CONSTANT_4D;
double dw9 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D;
double attn9 = 2 - dx9 * dx9 - dy9 * dy9 - dz9 * dz9 - dw9 * dw9;
if (attn9 > 0) {
attn9 *= attn9;
value += attn9 * attn9 * extrapolate(xsb + 0, ysb + 1, zsb + 0, wsb + 1, dx9, dy9, dz9, dw9);
}
//Contribution (0,0,1,1)
double dx10 = dx0 - 0 - 2 * SQUISH_CONSTANT_4D;
double dy10 = dy0 - 0 - 2 * SQUISH_CONSTANT_4D;
double dz10 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D;
double dw10 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D;
double attn10 = 2 - dx10 * dx10 - dy10 * dy10 - dz10 * dz10 - dw10 * dw10;
if (attn10 > 0) {
attn10 *= attn10;
value += attn10 * attn10 * extrapolate(xsb + 0, ysb + 0, zsb + 1, wsb + 1, dx10, dy10, dz10, dw10);
}
}
//First extra vertex
double attn_ext0 = 2 - dx_ext0 * dx_ext0 - dy_ext0 * dy_ext0 - dz_ext0 * dz_ext0 - dw_ext0 * dw_ext0;
if (attn_ext0 > 0)
{
attn_ext0 *= attn_ext0;
value += attn_ext0 * attn_ext0 * extrapolate(xsv_ext0, ysv_ext0, zsv_ext0, wsv_ext0, dx_ext0, dy_ext0, dz_ext0, dw_ext0);
}
//Second extra vertex
double attn_ext1 = 2 - dx_ext1 * dx_ext1 - dy_ext1 * dy_ext1 - dz_ext1 * dz_ext1 - dw_ext1 * dw_ext1;
if (attn_ext1 > 0)
{
attn_ext1 *= attn_ext1;
value += attn_ext1 * attn_ext1 * extrapolate(xsv_ext1, ysv_ext1, zsv_ext1, wsv_ext1, dx_ext1, dy_ext1, dz_ext1, dw_ext1);
}
//Third extra vertex
double attn_ext2 = 2 - dx_ext2 * dx_ext2 - dy_ext2 * dy_ext2 - dz_ext2 * dz_ext2 - dw_ext2 * dw_ext2;
if (attn_ext2 > 0)
{
attn_ext2 *= attn_ext2;
value += attn_ext2 * attn_ext2 * extrapolate(xsv_ext2, ysv_ext2, zsv_ext2, wsv_ext2, dx_ext2, dy_ext2, dz_ext2, dw_ext2);
}
return value / NORM_CONSTANT_4D;
}
private double extrapolate(int xsb, int ysb, double dx, double dy)
{
int index = perm[(perm[xsb & 0xFF] + ysb) & 0xFF] & 0x0E;
return gradients2D[index] * dx
+ gradients2D[index + 1] * dy;
}
private double extrapolate(int xsb, int ysb, int zsb, double dx, double dy, double dz)
{
int index = permGradIndex3D[(perm[(perm[xsb & 0xFF] + ysb) & 0xFF] + zsb) & 0xFF];
return gradients3D[index] * dx
+ gradients3D[index + 1] * dy
+ gradients3D[index + 2] * dz;
}
private double extrapolate(int xsb, int ysb, int zsb, int wsb, double dx, double dy, double dz, double dw)
{
int index = perm[(perm[(perm[(perm[xsb & 0xFF] + ysb) & 0xFF] + zsb) & 0xFF] + wsb) & 0xFF] & 0xFC;
return gradients4D[index] * dx
+ gradients4D[index + 1] * dy
+ gradients4D[index + 2] * dz
+ gradients4D[index + 3] * dw;
}
private static int fastFloor(double x) {
int xi = (int)x;
return x < xi ? xi - 1 : xi;
}
//Gradients for 2D. They approximate the directions to the
//vertices of an octagon from the center.
private static readonly sbyte[] gradients2D = new sbyte[] {
5, 2, 2, 5,
-5, 2, -2, 5,
5, -2, 2, -5,
-5, -2, -2, -5,
};
//Gradients for 3D. They approximate the directions to the
//vertices of a rhombicuboctahedron from the center, skewed so
//that the triangular and square facets can be inscribed inside
//circles of the same radius.
private static readonly sbyte[] gradients3D = new sbyte[] {
-11, 4, 4, -4, 11, 4, -4, 4, 11,
11, 4, 4, 4, 11, 4, 4, 4, 11,
-11, -4, 4, -4, -11, 4, -4, -4, 11,
11, -4, 4, 4, -11, 4, 4, -4, 11,
-11, 4, -4, -4, 11, -4, -4, 4, -11,
11, 4, -4, 4, 11, -4, 4, 4, -11,
-11, -4, -4, -4, -11, -4, -4, -4, -11,
11, -4, -4, 4, -11, -4, 4, -4, -11,
};
//Gradients for 4D. They approximate the directions to the
//vertices of a disprismatotesseractihexadecachoron from the center,
//skewed so that the tetrahedral and cubic facets can be inscribed inside
//spheres of the same radius.
private static readonly sbyte[] gradients4D = new sbyte[] {
3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3,
-3, 1, 1, 1, -1, 3, 1, 1, -1, 1, 3, 1, -1, 1, 1, 3,
3, -1, 1, 1, 1, -3, 1, 1, 1, -1, 3, 1, 1, -1, 1, 3,
-3, -1, 1, 1, -1, -3, 1, 1, -1, -1, 3, 1, -1, -1, 1, 3,
3, 1, -1, 1, 1, 3, -1, 1, 1, 1, -3, 1, 1, 1, -1, 3,
-3, 1, -1, 1, -1, 3, -1, 1, -1, 1, -3, 1, -1, 1, -1, 3,
3, -1, -1, 1, 1, -3, -1, 1, 1, -1, -3, 1, 1, -1, -1, 3,
-3, -1, -1, 1, -1, -3, -1, 1, -1, -1, -3, 1, -1, -1, -1, 3,
3, 1, 1, -1, 1, 3, 1, -1, 1, 1, 3, -1, 1, 1, 1, -3,
-3, 1, 1, -1, -1, 3, 1, -1, -1, 1, 3, -1, -1, 1, 1, -3,
3, -1, 1, -1, 1, -3, 1, -1, 1, -1, 3, -1, 1, -1, 1, -3,
-3, -1, 1, -1, -1, -3, 1, -1, -1, -1, 3, -1, -1, -1, 1, -3,
3, 1, -1, -1, 1, 3, -1, -1, 1, 1, -3, -1, 1, 1, -1, -3,
-3, 1, -1, -1, -1, 3, -1, -1, -1, 1, -3, -1, -1, 1, -1, -3,
3, -1, -1, -1, 1, -3, -1, -1, 1, -1, -3, -1, 1, -1, -1, -3,
-3, -1, -1, -1, -1, -3, -1, -1, -1, -1, -3, -1, -1, -1, -1, -3,
};
}
This is free and unencumbered software released into the public domain.
Anyone is free to copy, modify, publish, use, compile, sell, or
distribute this software, either in source code form or as a compiled
binary, for any purpose, commercial or non-commercial, and by any
means.
In jurisdictions that recognize copyright laws, the author or authors
of this software dedicate any and all copyright interest in the
software to the public domain. We make this dedication for the benefit
of the public at large and to the detriment of our heirs and
successors. We intend this dedication to be an overt act of
relinquishment in perpetuity of all present and future rights to this
software under copyright law.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
@digitalsanity
Copy link

Very nice.

Copy link

ghost commented Feb 12, 2015

Thank you for this port!

@ashmoreinc
Copy link

This is great, thanks for the port!

One quick question, what is the min and max values that eval returns?

@pansapiens
Copy link

@ashmoreinc Looks to me like the min/max of OpenSimplexNoise.eval is -1 to 1 (in particular, look at how this line in the example code scales and offsets the value to be between 0, 1 for the Unity Color class).

If you generate values and check the min/max, you'll find in practice it rarely (if ever) hits the min/max -1,1: eg https://replit.com/@pansapiens/OpenSimplexNoise - 10 million iterations and I only ever hit -0.94 to 0.94.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment