Last active
December 6, 2024 13:55
-
-
Save owulveryck/19a5ba9553ff8209b3b4227b5325041b to your computer and use it in GitHub Desktop.
Linear regression on iris dataset with Gorgonia and gota
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
sepal_length | sepal_width | petal_length | petal_width | species | |
---|---|---|---|---|---|
5.1 | 3.5 | 1.4 | 0.2 | setosa | |
4.9 | 3.0 | 1.4 | 0.2 | setosa | |
4.7 | 3.2 | 1.3 | 0.2 | setosa | |
4.6 | 3.1 | 1.5 | 0.2 | setosa | |
5.0 | 3.6 | 1.4 | 0.2 | setosa | |
5.4 | 3.9 | 1.7 | 0.4 | setosa | |
4.6 | 3.4 | 1.4 | 0.3 | setosa | |
5.0 | 3.4 | 1.5 | 0.2 | setosa | |
4.4 | 2.9 | 1.4 | 0.2 | setosa | |
4.9 | 3.1 | 1.5 | 0.1 | setosa | |
5.4 | 3.7 | 1.5 | 0.2 | setosa | |
4.8 | 3.4 | 1.6 | 0.2 | setosa | |
4.8 | 3.0 | 1.4 | 0.1 | setosa | |
4.3 | 3.0 | 1.1 | 0.1 | setosa | |
5.8 | 4.0 | 1.2 | 0.2 | setosa | |
5.7 | 4.4 | 1.5 | 0.4 | setosa | |
5.4 | 3.9 | 1.3 | 0.4 | setosa | |
5.1 | 3.5 | 1.4 | 0.3 | setosa | |
5.7 | 3.8 | 1.7 | 0.3 | setosa | |
5.1 | 3.8 | 1.5 | 0.3 | setosa | |
5.4 | 3.4 | 1.7 | 0.2 | setosa | |
5.1 | 3.7 | 1.5 | 0.4 | setosa | |
4.6 | 3.6 | 1.0 | 0.2 | setosa | |
5.1 | 3.3 | 1.7 | 0.5 | setosa | |
4.8 | 3.4 | 1.9 | 0.2 | setosa | |
5.0 | 3.0 | 1.6 | 0.2 | setosa | |
5.0 | 3.4 | 1.6 | 0.4 | setosa | |
5.2 | 3.5 | 1.5 | 0.2 | setosa | |
5.2 | 3.4 | 1.4 | 0.2 | setosa | |
4.7 | 3.2 | 1.6 | 0.2 | setosa | |
4.8 | 3.1 | 1.6 | 0.2 | setosa | |
5.4 | 3.4 | 1.5 | 0.4 | setosa | |
5.2 | 4.1 | 1.5 | 0.1 | setosa | |
5.5 | 4.2 | 1.4 | 0.2 | setosa | |
4.9 | 3.1 | 1.5 | 0.1 | setosa | |
5.0 | 3.2 | 1.2 | 0.2 | setosa | |
5.5 | 3.5 | 1.3 | 0.2 | setosa | |
4.9 | 3.1 | 1.5 | 0.1 | setosa | |
4.4 | 3.0 | 1.3 | 0.2 | setosa | |
5.1 | 3.4 | 1.5 | 0.2 | setosa | |
5.0 | 3.5 | 1.3 | 0.3 | setosa | |
4.5 | 2.3 | 1.3 | 0.3 | setosa | |
4.4 | 3.2 | 1.3 | 0.2 | setosa | |
5.0 | 3.5 | 1.6 | 0.6 | setosa | |
5.1 | 3.8 | 1.9 | 0.4 | setosa | |
4.8 | 3.0 | 1.4 | 0.3 | setosa | |
5.1 | 3.8 | 1.6 | 0.2 | setosa | |
4.6 | 3.2 | 1.4 | 0.2 | setosa | |
5.3 | 3.7 | 1.5 | 0.2 | setosa | |
5.0 | 3.3 | 1.4 | 0.2 | setosa | |
7.0 | 3.2 | 4.7 | 1.4 | versicolor | |
6.4 | 3.2 | 4.5 | 1.5 | versicolor | |
6.9 | 3.1 | 4.9 | 1.5 | versicolor | |
5.5 | 2.3 | 4.0 | 1.3 | versicolor | |
6.5 | 2.8 | 4.6 | 1.5 | versicolor | |
5.7 | 2.8 | 4.5 | 1.3 | versicolor | |
6.3 | 3.3 | 4.7 | 1.6 | versicolor | |
4.9 | 2.4 | 3.3 | 1.0 | versicolor | |
6.6 | 2.9 | 4.6 | 1.3 | versicolor | |
5.2 | 2.7 | 3.9 | 1.4 | versicolor | |
5.0 | 2.0 | 3.5 | 1.0 | versicolor | |
5.9 | 3.0 | 4.2 | 1.5 | versicolor | |
6.0 | 2.2 | 4.0 | 1.0 | versicolor | |
6.1 | 2.9 | 4.7 | 1.4 | versicolor | |
5.6 | 2.9 | 3.6 | 1.3 | versicolor | |
6.7 | 3.1 | 4.4 | 1.4 | versicolor | |
5.6 | 3.0 | 4.5 | 1.5 | versicolor | |
5.8 | 2.7 | 4.1 | 1.0 | versicolor | |
6.2 | 2.2 | 4.5 | 1.5 | versicolor | |
5.6 | 2.5 | 3.9 | 1.1 | versicolor | |
5.9 | 3.2 | 4.8 | 1.8 | versicolor | |
6.1 | 2.8 | 4.0 | 1.3 | versicolor | |
6.3 | 2.5 | 4.9 | 1.5 | versicolor | |
6.1 | 2.8 | 4.7 | 1.2 | versicolor | |
6.4 | 2.9 | 4.3 | 1.3 | versicolor | |
6.6 | 3.0 | 4.4 | 1.4 | versicolor | |
6.8 | 2.8 | 4.8 | 1.4 | versicolor | |
6.7 | 3.0 | 5.0 | 1.7 | versicolor | |
6.0 | 2.9 | 4.5 | 1.5 | versicolor | |
5.7 | 2.6 | 3.5 | 1.0 | versicolor | |
5.5 | 2.4 | 3.8 | 1.1 | versicolor | |
5.5 | 2.4 | 3.7 | 1.0 | versicolor | |
5.8 | 2.7 | 3.9 | 1.2 | versicolor | |
6.0 | 2.7 | 5.1 | 1.6 | versicolor | |
5.4 | 3.0 | 4.5 | 1.5 | versicolor | |
6.0 | 3.4 | 4.5 | 1.6 | versicolor | |
6.7 | 3.1 | 4.7 | 1.5 | versicolor | |
6.3 | 2.3 | 4.4 | 1.3 | versicolor | |
5.6 | 3.0 | 4.1 | 1.3 | versicolor | |
5.5 | 2.5 | 4.0 | 1.3 | versicolor | |
5.5 | 2.6 | 4.4 | 1.2 | versicolor | |
6.1 | 3.0 | 4.6 | 1.4 | versicolor | |
5.8 | 2.6 | 4.0 | 1.2 | versicolor | |
5.0 | 2.3 | 3.3 | 1.0 | versicolor | |
5.6 | 2.7 | 4.2 | 1.3 | versicolor | |
5.7 | 3.0 | 4.2 | 1.2 | versicolor | |
5.7 | 2.9 | 4.2 | 1.3 | versicolor | |
6.2 | 2.9 | 4.3 | 1.3 | versicolor | |
5.1 | 2.5 | 3.0 | 1.1 | versicolor | |
5.7 | 2.8 | 4.1 | 1.3 | versicolor | |
6.3 | 3.3 | 6.0 | 2.5 | virginica | |
5.8 | 2.7 | 5.1 | 1.9 | virginica | |
7.1 | 3.0 | 5.9 | 2.1 | virginica | |
6.3 | 2.9 | 5.6 | 1.8 | virginica | |
6.5 | 3.0 | 5.8 | 2.2 | virginica | |
7.6 | 3.0 | 6.6 | 2.1 | virginica | |
4.9 | 2.5 | 4.5 | 1.7 | virginica | |
7.3 | 2.9 | 6.3 | 1.8 | virginica | |
6.7 | 2.5 | 5.8 | 1.8 | virginica | |
7.2 | 3.6 | 6.1 | 2.5 | virginica | |
6.5 | 3.2 | 5.1 | 2.0 | virginica | |
6.4 | 2.7 | 5.3 | 1.9 | virginica | |
6.8 | 3.0 | 5.5 | 2.1 | virginica | |
5.7 | 2.5 | 5.0 | 2.0 | virginica | |
5.8 | 2.8 | 5.1 | 2.4 | virginica | |
6.4 | 3.2 | 5.3 | 2.3 | virginica | |
6.5 | 3.0 | 5.5 | 1.8 | virginica | |
7.7 | 3.8 | 6.7 | 2.2 | virginica | |
7.7 | 2.6 | 6.9 | 2.3 | virginica | |
6.0 | 2.2 | 5.0 | 1.5 | virginica | |
6.9 | 3.2 | 5.7 | 2.3 | virginica | |
5.6 | 2.8 | 4.9 | 2.0 | virginica | |
7.7 | 2.8 | 6.7 | 2.0 | virginica | |
6.3 | 2.7 | 4.9 | 1.8 | virginica | |
6.7 | 3.3 | 5.7 | 2.1 | virginica | |
7.2 | 3.2 | 6.0 | 1.8 | virginica | |
6.2 | 2.8 | 4.8 | 1.8 | virginica | |
6.1 | 3.0 | 4.9 | 1.8 | virginica | |
6.4 | 2.8 | 5.6 | 2.1 | virginica | |
7.2 | 3.0 | 5.8 | 1.6 | virginica | |
7.4 | 2.8 | 6.1 | 1.9 | virginica | |
7.9 | 3.8 | 6.4 | 2.0 | virginica | |
6.4 | 2.8 | 5.6 | 2.2 | virginica | |
6.3 | 2.8 | 5.1 | 1.5 | virginica | |
6.1 | 2.6 | 5.6 | 1.4 | virginica | |
7.7 | 3.0 | 6.1 | 2.3 | virginica | |
6.3 | 3.4 | 5.6 | 2.4 | virginica | |
6.4 | 3.1 | 5.5 | 1.8 | virginica | |
6.0 | 3.0 | 4.8 | 1.8 | virginica | |
6.9 | 3.1 | 5.4 | 2.1 | virginica | |
6.7 | 3.1 | 5.6 | 2.4 | virginica | |
6.9 | 3.1 | 5.1 | 2.3 | virginica | |
5.8 | 2.7 | 5.1 | 1.9 | virginica | |
6.8 | 3.2 | 5.9 | 2.3 | virginica | |
6.7 | 3.3 | 5.7 | 2.5 | virginica | |
6.7 | 3.0 | 5.2 | 2.3 | virginica | |
6.3 | 2.5 | 5.0 | 1.9 | virginica | |
6.5 | 3.0 | 5.2 | 2.0 | virginica | |
6.2 | 3.4 | 5.4 | 2.3 | virginica | |
5.9 | 3.0 | 5.1 | 1.8 | virginica |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
package main | |
import ( | |
"fmt" | |
"log" | |
"math" | |
"os" | |
"github.com/go-gota/gota/dataframe" | |
"github.com/go-gota/gota/series" | |
"gonum.org/v1/gonum/mat" | |
"gorgonia.org/gorgonia" | |
"gorgonia.org/tensor" | |
) | |
// https://www.kaggle.com/amarpandey/implementing-linear-regression-on-iris-dataset/notebook | |
// | |
func main() { | |
xT, yT := getXY() | |
g := gorgonia.NewGraph() | |
x := gorgonia.NodeFromAny(g, xT, gorgonia.WithName("x")) | |
y := gorgonia.NodeFromAny(g, yT, gorgonia.WithName("y")) | |
theta := gorgonia.NewVector( | |
g, | |
gorgonia.Float64, | |
gorgonia.WithName("theta"), | |
gorgonia.WithShape(xT.Shape()[1]), | |
gorgonia.WithInit(gorgonia.Uniform(0, 1))) | |
pred := must(gorgonia.Mul(x, theta)) | |
// Gorgonia might delete values from nodes so we are going to save it | |
// and print it out later | |
var predicted gorgonia.Value | |
gorgonia.Read(pred, &predicted) | |
squaredError := must(gorgonia.Square(must(gorgonia.Sub(pred, y)))) | |
cost := must(gorgonia.Mean(squaredError)) | |
if _, err := gorgonia.Grad(cost, theta); err != nil { | |
log.Fatalf("Failed to backpropagate: %v", err) | |
} | |
machine := gorgonia.NewTapeMachine(g, gorgonia.BindDualValues(theta)) | |
defer machine.Close() | |
model := []gorgonia.ValueGrad{theta} | |
solver := gorgonia.NewVanillaSolver(gorgonia.WithLearnRate(0.001)) | |
iter := 100000 | |
var err error | |
for i := 0; i < iter; i++ { | |
if err = machine.RunAll(); err != nil { | |
fmt.Printf("Error during iteration: %v: %v\n", i, err) | |
break | |
} | |
if err = solver.Step(model); err != nil { | |
log.Fatal(err) | |
} | |
fmt.Printf("theta: %2.2f Iter: %v Cost: %2.3f Accuracy: %2.2f \r", | |
theta.Value(), | |
i, | |
cost.Value(), | |
accuracy(predicted.Data().([]float64), y.Value().Data().([]float64))) | |
machine.Reset() // Reset is necessary in a loop like this | |
} | |
fmt.Println("") | |
} | |
func accuracy(prediction, y []float64) float64 { | |
var ok float64 | |
for i := 0; i < len(prediction); i++ { | |
if math.Round(prediction[i]-y[i]) == 0 { | |
ok += 1.0 | |
} | |
} | |
return ok / float64(len(y)) | |
} | |
func getXY() (*tensor.Dense, *tensor.Dense) { | |
f, err := os.Open("iris.csv") | |
if err != nil { | |
log.Fatal(err) | |
} | |
defer f.Close() | |
df := dataframe.ReadCSV(f) | |
xDF := df.Drop("species") | |
toValue := func(s series.Series) series.Series { | |
records := s.Records() | |
floats := make([]float64, len(records)) | |
for i, r := range records { | |
switch r { | |
case "setosa": | |
floats[i] = 1 | |
case "virginica": | |
floats[i] = 2 | |
case "versicolor": | |
floats[i] = 3 | |
default: | |
log.Fatalf("unknown iris: %v\n", r) | |
} | |
} | |
return series.Floats(floats) | |
} | |
yDF := df.Select("species").Capply(toValue) | |
numRows, _ := xDF.Dims() | |
xDF = xDF.Mutate(series.New(one(numRows), series.Float, "bias")) | |
fmt.Println(xDF.Describe()) | |
fmt.Println(yDF.Describe()) | |
xT := tensor.FromMat64(mat.DenseCopyOf(&matrix{xDF})) | |
yT := tensor.FromMat64(mat.DenseCopyOf(&matrix{yDF})) | |
// Get rid of the last dimension to create a vector | |
yT.Reshape(numRows) | |
return xT, yT | |
} | |
type matrix struct { | |
dataframe.DataFrame | |
} | |
func (m matrix) At(i, j int) float64 { | |
return m.Elem(i, j).Float() | |
} | |
func (m matrix) T() mat.Matrix { | |
return mat.Transpose{Matrix: m} | |
} | |
func must(n *gorgonia.Node, err error) *gorgonia.Node { | |
if err != nil { | |
panic(err) | |
} | |
return n | |
} | |
func one(size int) []float64 { | |
one := make([]float64, size) | |
for i := 0; i < size; i++ { | |
one[i] = 1.0 | |
} | |
return one | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
package main | |
import ( | |
"fmt" | |
"log" | |
"os" | |
"github.com/go-gota/gota/dataframe" | |
"github.com/go-gota/gota/series" | |
"gonum.org/v1/gonum/mat" | |
) | |
func main() { | |
fa := mat.Formatted(getThetaNormal(), mat.Prefix(" "), mat.Squeeze()) | |
fmt.Printf("ϴ: %v\n", fa) | |
} | |
func getXYMat() (*mat.Dense, *mat.Dense) { | |
f, err := os.Open("iris.csv") | |
if err != nil { | |
log.Fatal(err) | |
} | |
defer f.Close() | |
df := dataframe.ReadCSV(f) | |
xDF := df.Drop("species") | |
toValue := func(s series.Series) series.Series { | |
records := s.Records() | |
floats := make([]float64, len(records)) | |
for i, r := range records { | |
switch r { | |
case "setosa": | |
floats[i] = 1 | |
case "virginica": | |
floats[i] = 2 | |
case "versicolor": | |
floats[i] = 3 | |
default: | |
log.Fatalf("unknown iris: %v\n", r) | |
} | |
} | |
return series.Floats(floats) | |
} | |
yDF := df.Select("species").Capply(toValue) | |
numRows, _ := xDF.Dims() | |
xDF = xDF.Mutate(series.New(one(numRows), series.Float, "bias")) | |
fmt.Println(xDF.Describe()) | |
fmt.Println(yDF.Describe()) | |
return mat.DenseCopyOf(&matrix{xDF}), mat.DenseCopyOf(&matrix{yDF}) | |
} | |
func one(size int) []float64 { | |
one := make([]float64, size) | |
for i := 0; i < size; i++ { | |
one[i] = 1.0 | |
} | |
return one | |
} | |
func getThetaNormal() *mat.Dense { | |
x, y := getXYMat() | |
xt := mat.DenseCopyOf(x).T() | |
var xtx mat.Dense | |
xtx.Mul(xt, x) | |
var invxtx mat.Dense | |
invxtx.Inverse(&xtx) | |
var xty mat.Dense | |
xty.Mul(xt, y) | |
var output mat.Dense | |
output.Mul(&invxtx, &xty) | |
return &output | |
} | |
type matrix struct { | |
dataframe.DataFrame | |
} | |
func (m matrix) At(i, j int) float64 { | |
return m.Elem(i, j).Float() | |
} | |
func (m matrix) T() mat.Matrix { | |
return mat.Transpose{Matrix: m} | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
[7x6] DataFrame | |
column sepal_length sepal_width petal_length petal_width bias | |
0: mean 5.843333 3.054000 3.758667 1.198667 1.000000 | |
1: stddev 0.828066 0.433594 1.764420 0.763161 0.000000 | |
2: min 4.300000 2.000000 1.000000 0.100000 1.000000 | |
3: 25% 5.100000 2.800000 1.600000 0.300000 1.000000 | |
4: 50% 5.800000 3.000000 4.300000 1.300000 1.000000 | |
5: 75% 6.400000 3.300000 5.100000 1.800000 1.000000 | |
6: max 7.900000 4.400000 6.900000 2.500000 1.000000 | |
<string> <float> <float> <float> <float> <float> | |
[7x2] DataFrame | |
column species | |
0: mean 2.000000 | |
1: stddev 0.819232 | |
2: min 1.000000 | |
3: 25% 1.000000 | |
4: 50% 2.000000 | |
5: 75% 3.000000 | |
6: max 3.000000 | |
<string> <float> | |
ϴ: ⎡-0.08718768910924979⎤ | |
⎢ -0.6831785613306529⎥ | |
⎢ 0.44128274494996056⎥ | |
⎢-0.41983988087491575⎥ | |
⎣ 3.4405073828555714⎦ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
[7x6] DataFrame | |
column sepal_length sepal_width petal_length petal_width bias | |
0: mean 5.843333 3.054000 3.758667 1.198667 1.000000 | |
1: stddev 0.828066 0.433594 1.764420 0.763161 0.000000 | |
2: min 4.300000 2.000000 1.000000 0.100000 1.000000 | |
3: 25% 5.100000 2.800000 1.600000 0.300000 1.000000 | |
4: 50% 5.800000 3.000000 4.300000 1.300000 1.000000 | |
5: 75% 6.400000 3.300000 5.100000 1.800000 1.000000 | |
6: max 7.900000 4.400000 6.900000 2.500000 1.000000 | |
<string> <float> <float> <float> <float> <float> | |
[7x2] DataFrame | |
column species | |
0: mean 2.000000 | |
1: stddev 0.819232 | |
2: min 1.000000 | |
3: 25% 1.000000 | |
4: 50% 2.000000 | |
5: 75% 3.000000 | |
6: max 3.000000 | |
<string> <float> | |
theta: [-0.00 -0.63 0.43 -0.45 2.86] Iter: 99999 Cost: 0.289 Accuracy: 0.58 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment