Skip to content

Instantly share code, notes, and snippets.

@jboner
jboner / latency.txt
Last active April 27, 2024 16:42
Latency Numbers Every Programmer Should Know
Latency Comparison Numbers (~2012)
----------------------------------
L1 cache reference 0.5 ns
Branch mispredict 5 ns
L2 cache reference 7 ns 14x L1 cache
Mutex lock/unlock 25 ns
Main memory reference 100 ns 20x L2 cache, 200x L1 cache
Compress 1K bytes with Zippy 3,000 ns 3 us
Send 1K bytes over 1 Gbps network 10,000 ns 10 us
Read 4K randomly from SSD* 150,000 ns 150 us ~1GB/sec SSD

Thread Pools

Thread pools on the JVM should usually be divided into the following three categories:

  1. CPU-bound
  2. Blocking IO
  3. Non-blocking IO polling

Each of these categories has a different optimal configuration and usage pattern.

Quick Tips for Fast Code on the JVM

I was talking to a coworker recently about general techniques that almost always form the core of any effort to write very fast, down-to-the-metal hot path code on the JVM, and they pointed out that there really isn't a particularly good place to go for this information. It occurred to me that, really, I had more or less picked up all of it by word of mouth and experience, and there just aren't any good reference sources on the topic. So… here's my word of mouth.

This is by no means a comprehensive gist. It's also important to understand that the techniques that I outline in here are not 100% absolute either. Performance on the JVM is an incredibly complicated subject, and while there are rules that almost always hold true, the "almost" remains very salient. Also, for many or even most applications, there will be other techniques that I'm not mentioning which will have a greater impact. JMH, Java Flight Recorder, and a good profiler are your very best friend! Mea

@viktorklang
viktorklang / minscalaactors.scala
Last active March 25, 2024 19:01
Minimalist Scala Actors
/*
Copyright 2012-2021 Viktor Klang
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
@artero
artero / launch_sublime_from_terminal.markdown
Last active January 25, 2024 16:57 — forked from olivierlacan/launch_sublime_from_terminal.markdown
Launch Sublime Text 2 from the Mac OS X Terminal

Launch Sublime Text 2 from the Mac OS X Terminal

Sublime Text 2 ships with a CLI called subl (why not "sublime", go figure). This utility is hidden in the following folder (assuming you installed Sublime in /Applications like normal folk. If this following line opens Sublime Text for you, then bingo, you're ready.

open /Applications/Sublime\ Text\ 2.app/Contents/SharedSupport/bin/subl

You can find more (official) details about subl here: http://www.sublimetext.com/docs/2/osx_command_line.html

Installation

Revisiting Tagless Final Interpreters

Tageless Final interpreters are an alternative to the traditional Algebraic Data Type (and generalized ADT) based implementation of the interpreter pattern. This document presents the Tageless Final approach with Scala, and shows how Dotty with it's recently added implicits functions makes the approach even more appealing. All examples are direct translations of their Haskell version presented in the Typed Tagless Final Interpreters: Lecture Notes (section 2).

The interpreter pattern has recently received a lot of attention in the Scala community. A lot of efforts have been invested in trying to address the biggest shortcomings of ADT/GADT based solutions: extensibility. One can first look at cats' Inject typeclass for an implementation of [Data Type à la Carte](http://www.cs.ru.nl/~W.Swierstra/Publications/DataTypesA

Applied Functional Programming with Scala - Notes

Copyright © 2016-2018 Fantasyland Institute of Learning. All rights reserved.

1. Mastering Functions

A function is a mapping from one set, called a domain, to another set, called the codomain. A function associates every element in the domain with exactly one element in the codomain. In Scala, both domain and codomain are types.

val square : Int => Int = x => x * x
@djspiewak
djspiewak / 0introduction.md
Last active November 28, 2023 15:03
Scala Collections Proposal

Collections Redesign Proposal

I'm going to start off by motivating what I'm doing here. And I want to be clear that I'm not "dissing" the existing collections implementation or anything as unproductively negative as that. It was a really good experiment, it was a huge step forward given what we knew back in 2.8, but now it's time to learn from that experiment and do better. This proposal uses what I believe are the lessons we can learn about what worked, what didn't work, and what is and isn't important about collections in Scala.

This is going to start out sounding really negative and pervasively dismissive, but bear with me! There's a point to all my ranting. I want to be really clear about my motivations for the proposal being the way that it is.

Problems

Generic Interfaces

@viktorklang
viktorklang / in-fino-veritas.zsh-theme
Last active July 31, 2023 01:47
In Fino Veritas ZSH theme
#!/usr/bin/env zsh
# in fino veritas
# Borrowing shamelessly from these oh-my-zsh themes:
# fino-time
# pure
# https://gist.github.com/smileart/3750104
# Set required options

Explaining Miles's Magic

Miles Sabin recently opened a pull request fixing the infamous SI-2712. First off, this is remarkable and, if merged, will make everyone's life enormously easier. This is a bug that a lot of people hit often without even realizing it, and they just assume that either they did something wrong or the compiler is broken in some weird way. It is especially common for users of scalaz or cats.

But that's not what I wanted to write about. What I want to write about is the exact semantics of Miles's fix, because it does impose some very specific assumptions about the way that type constructors work, and understanding those assumptions is the key to getting the most of it his fix.

For starters, here is the sort of thing that SI-2712 affects:

def foo[F[_], A](fa: F[A]): String = fa.toString