Skip to content

Instantly share code, notes, and snippets.

Avatar

pjstein pjstein

View GitHub Profile
@gre
gre / easing.js
Last active Jun 24, 2022
Simple Easing Functions in Javascript - see https://github.com/gre/bezier-easing
View easing.js
/*
* Easing Functions - inspired from http://gizma.com/easing/
* only considering the t value for the range [0, 1] => [0, 1]
*/
EasingFunctions = {
// no easing, no acceleration
linear: t => t,
// accelerating from zero velocity
easeInQuad: t => t*t,
// decelerating to zero velocity
@marktheunissen
marktheunissen / pedantically_commented_playbook.yml
Last active Jun 6, 2022 — forked from phred/pedantically_commented_playbook.yml
Insanely complete Ansible playbook, showing off all the options
View pedantically_commented_playbook.yml
This playbook has been removed as it is now very outdated.
@martinseener
martinseener / gist:5247292
Last active Jul 1, 2019
Grok Sophos UTM 9.x Pattern (for logstash) (Simple)
View gist:5247292
filter {
grok {
pattern => ['(?:%{SYSLOGTIMESTAMP:timestamp}|%{TIMESTAMP_ISO8601:timestamp8601}) (?:%{SYSLOGHOST:logsource}) (?:%{YEAR}): (?:%{MONTHNUM}):(?:%{MONTHDAY})-(?:%{HOUR}):(?:%{MINUTE}):(?:%{SECOND}) (?:%{SYSLOGHOST}) (?:%{SYSLOGPROG}): (?<messagebody>(?:id=\"%{INT:utm_id}\" severity=\"%{LOGLEVEL:utm_severity}\" sys=\"%{DATA:utm_sys}\" sub=\"%{DATA:utm_sub}\" name=\"%{DATA:utm_name}\" action=\"%{DATA:utm_action}\" fwrule=\"%{INT:utm_ulogd_fwrule}\" initf=\"%{DATA:utm_ulogd_initf}\" outitf=\"%{DATA:utm_ulogd_outif}\" (?:srcmac=\"%{GREEDYDATA:utm_ulogd_srcmac}\" dstmac=\"%{GREEDYDATA:utm_ulogd_dstmac}\"|srcmac=\"%{GREEDYDATA:utm_ulogd_srcmac}\") srcip=\"%{IP:utm_srcip}\" dstip=\"%{IP:utm_dstip}\" proto=\"%{INT:utm_protocol}\" length=\"%{INT:utm_ulogd_pkglength}\" tos=\"%{DATA:utm_ulogd_tos}\" prec=\"%{DATA:utm_ulogd_prec}\" ttl=\"%{INT:utm_ulogd_ttl}\" srcport=\"%{INT:utm_srcport}\" dstport=\"%{INT:utm_dstport}\" tcpflags=\"%{DATA:utm_ulogd_tcpflags}\"|id=\"%{INT:utm_id}\" severity=\"%{LOGLEVEL:utm
@ftrain
ftrain / rhymes.clj
Last active Jan 4, 2021
Annotated rhyming dictionary
View rhymes.clj
;; This is at: https://gist.github.com/8655399
;; So we want a rhyming dictionary in Clojure. Jack Rusher put up
;; this code here:
;;
;; https://gist.github.com/jackrusher/8640437
;;
;; I'm going to study this code and learn as I go.
;;
;; First I put it in a namespace.
@syhw
syhw / dnn.py
Last active Dec 22, 2021
A simple deep neural network with or w/o dropout in one file.
View dnn.py
"""
A deep neural network with or w/o dropout in one file.
License: Do What The Fuck You Want to Public License http://www.wtfpl.net/
"""
import numpy, theano, sys, math
from theano import tensor as T
from theano import shared
from theano.tensor.shared_randomstreams import RandomStreams
@markwalkom
markwalkom / logstash.conf
Last active Apr 29, 2022
Reindexing Elasticsearch with Logstash 2.0
View logstash.conf
input {
elasticsearch {
hosts => [ "HOSTNAME_HERE" ]
port => "9200"
index => "INDEXNAME_HERE"
size => 1000
scroll => "5m"
docinfo => true
scan => true
}
@karpathy
karpathy / min-char-rnn.py
Last active Jun 30, 2022
Minimal character-level language model with a Vanilla Recurrent Neural Network, in Python/numpy
View min-char-rnn.py
"""
Minimal character-level Vanilla RNN model. Written by Andrej Karpathy (@karpathy)
BSD License
"""
import numpy as np
# data I/O
data = open('input.txt', 'r').read() # should be simple plain text file
chars = list(set(data))
data_size, vocab_size = len(data), len(chars)
@maxim
maxim / gh-dl-release
Last active Jul 2, 2022
Download assets from private Github releases
View gh-dl-release
#!/usr/bin/env bash
#
# gh-dl-release! It works!
#
# This script downloads an asset from latest or specific Github release of a
# private repo. Feel free to extract more of the variables into command line
# parameters.
#
# PREREQUISITES
#
@yrevar
yrevar / imagenet1000_clsidx_to_labels.txt
Last active Jul 1, 2022
text: imagenet 1000 class idx to human readable labels (Fox, E., & Guestrin, C. (n.d.). Coursera Machine Learning Specialization.)
View imagenet1000_clsidx_to_labels.txt
{0: 'tench, Tinca tinca',
1: 'goldfish, Carassius auratus',
2: 'great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias',
3: 'tiger shark, Galeocerdo cuvieri',
4: 'hammerhead, hammerhead shark',
5: 'electric ray, crampfish, numbfish, torpedo',
6: 'stingray',
7: 'cock',
8: 'hen',
9: 'ostrich, Struthio camelus',
@karpathy
karpathy / pg-pong.py
Created May 30, 2016
Training a Neural Network ATARI Pong agent with Policy Gradients from raw pixels
View pg-pong.py
""" Trains an agent with (stochastic) Policy Gradients on Pong. Uses OpenAI Gym. """
import numpy as np
import cPickle as pickle
import gym
# hyperparameters
H = 200 # number of hidden layer neurons
batch_size = 10 # every how many episodes to do a param update?
learning_rate = 1e-4
gamma = 0.99 # discount factor for reward