We can now define a record by explaining what happens if you project the record. For instance:
{-# OPTIONS --copatterns #-}
record _×_ (A B : Set) : Set where
constructor _,_
field
fst : A
snd : B
open _×_
pair : {A B : Set} → A → B → A × B
fst (pair a b) = a
snd (pair a b) = b
swap : {A B : Set} → A × B → B × A
fst (swap p) = snd p
snd (swap p) = fst p
swap3 : {A B C : Set} → A × (B × C) → C × (B × A)
fst (swap3 t) = snd (snd t)
fst (snd (swap3 t)) = fst (snd t)
snd (snd (swap3 t)) = fst t
Taking a projection on the left hand side (lhs) is called a projection pattern, applying to a pattern is called an application pattern. (Alternative terms: projection/application copattern.)
In the first example, the symbol 'pair', if applied to variable patterns a and b and then projected via fst, reduces to a. 'pair' by itself does not reduce.
A typical application are coinductive records such as streams:
record Stream (A : Set) : Set where
coinductive
field
head : A
tail : Stream A
open Stream
repeat : {A : Set} (a : A) -> Stream A
head (repeat a) = a
tail (repeat a) = repeat a
Again, 'repeat a' by itself will not reduce, but you can take a projection (head or tail) and then it will reduce to the respective rhs. This way, we get the lazy reduction behavior necessary to avoid looping corecursive programs.
Application patterns do not need to be trivial (i.e., variable patterns), if we mix with projection patterns. E.g., we can have
nats : Nat -> Stream Nat
head (nats zero) = zero
tail (nats zero) = nats zero
head (nats (suc x)) = x
tail (nats (suc x)) = nats x
Here is an example (not involving coinduction) which demostrates records with fields of function type:
-- The State monad
record State (S A : Set) : Set where
constructor state
field
runState : S → A × S
open State
-- The Monad type class
record Monad (M : Set → Set) : Set1 where
constructor monad
field
return : {A : Set} → A → M A
_>>=_ : {A B : Set} → M A → (A → M B) → M B
-- State is an instance of Monad
-- Demonstrates the interleaving of projection and application patterns
stateMonad : {S : Set} → Monad (State S)
runState (Monad.return stateMonad a ) s = a , s
runState (Monad._>>=_ stateMonad m k) s₀ =
let a , s₁ = runState m s₀
in runState (k a) s₁
module MonadLawsForState {S : Set} where
open Monad (stateMonad {S})
leftId : {A B : Set}(a : A)(k : A → State S B) →
(return a >>= k) ≡ k a
leftId a k = refl
rightId : {A B : Set}(m : State S A) →
(m >>= return) ≡ m
rightId m = refl
assoc : {A B C : Set}(m : State S A)(k : A → State S B)(l : B → State S C) →
((m >>= k) >>= l) ≡ (m >>= λ a → (k a >>= l))
assoc m k l = refl
Copatterns are yet experimental and the following does not work:
-
Copatterns and 'with' clauses.
-
Compilation of copatterns to Haskell, JS, or Epic.
-
Projections generated by open R {{...}} are not handled properly on lhss yet.
-
Conversion checking is slower in the presence of copatterns, since stuck definitions of record type do no longer count as neutral, since they can become unstuck by applying a projection. Thus, comparing two neutrals currently requires comparing all they projections, which repeats a lot of work.