This has moved to https://github.com/jaspervdj/zurical
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| # Author: Luke Schoen 2017 | |
| import pandas as pd | |
| import numpy as np | |
| import functools | |
| # Create DataFrame | |
| # df = pd.DataFrame(np.random.randn(10,2)) | |
| # Populate with NaN values | |
| df = pd.DataFrame({'col1': ['1.111', '2.111', '3.111', '4.111'], 'col2': ['4.111', '5.111', np.NaN, '7.111'], 'col3': ['8', '9', np.NaN, np.NaN], 'col4': ['12', '13', '14', '15']}) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| <? | |
| # MIT license, do whatever you want with it | |
| # | |
| # This is my invoice.php page which I use to make invoices that customers want, | |
| # with their address on it and which are easily printable. I love Stripe but | |
| # their invoices and receipts were too wild for my customers on Remote OK | |
| # | |
| require_once(__DIR__.'/../vendor/autoload.php'); |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| default['sshd']['sshd_config']['AuthenticationMethods'] = 'publickey,keyboard-interactive:pam' | |
| default['sshd']['sshd_config']['ChallengeResponseAuthentication'] = 'yes' | |
| default['sshd']['sshd_config']['PasswordAuthentication'] = 'no' |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import tensorflow as tf | |
| import pandas as pd | |
| from sklearn.model_selection import StratifiedKFold | |
| def tf_cross_val_score(X, y, x_col_nms, n_classes): | |
| """ | |
| Takes features, number of classes, labels and feature vector names and returns 3 validation scores. | |
| *X* Numpy ndarray - features |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| # -*- coding: utf-8 -*- | |
| """ | |
| Created on Thu Oct 26 18:32:47 2017 | |
| Supervised machine learning with scikit learn | |
| L'objectif de ce tutoriel est de vous introduire à la manipulation de scikit-learn. | |
| Pour cela, on charge en mémoire de la donnée avant de voir comment mettre sur pied des modèles de machine learning supervisés. | |
| On verra ensuite comment ensembler les modèles, puis comment utiliser les procédures de cross-validation, comment utiliser la fonctionnalité de grid search (ainsi qu'un module supplémentaire s'intégrant très bien à scikit-learn, qui permet de faire du grid search évolutionnaire), comment utiliser la fonctionnalité d'élimination récursive des features. | |
| Notez que le but de ce tutoriel est de comprendre comment un objet "modèle" peut être passé pour être transformé en objet "modèle cross validé" puis à nouveau passé pour être transformé en objet "modèle cross validé optimisé via grid search", puis à nouveau pour être transformé en "modèle ensemblé résultant de plusieurs modèles qui ont été cro |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| # Author: Luke Schoen 2017 | |
| import pandas as pd | |
| import numpy as np | |
| import functools | |
| # Create DataFrame | |
| # df = pd.DataFrame(np.random.randn(10,2)) | |
| # Populate with NaN values | |
| df = pd.DataFrame({'col1': ['1.111', '2.111', '3.111', '4.111'], 'col2': ['4.111', '5.111', np.NaN, '7.111'], 'col3': ['8', '9', np.NaN, np.NaN], 'col4': ['12', '13', '14', '15']}) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import torch | |
| import torch.nn as nn | |
| from torch.nn import functional as F | |
| from torch.autograd import Variable | |
| from torch import optim | |
| import numpy as np | |
| import math, random | |
| # Generating a noisy multi-sin wave |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| --- | |
| driver: | |
| name: azurerm | |
| driver_config: | |
| subscription_id: '4801fa9d-YOUR-GUID-HERE-b265ff49ce21' | |
| location: 'West Europe' | |
| machine_size: 'Standard_D1' | |
| transport: |
NewerOlder