Skip to content

Instantly share code, notes, and snippets.

@richard-orr
Last active March 15, 2023 02:27
flatten openalex JSON Lines files to CSV readable by PostgreSQL
import csv
import glob
import gzip
import json
import os
SNAPSHOT_DIR = 'openalex-snapshot'
CSV_DIR = 'csv-files'
FILES_PER_ENTITY = int(os.environ.get('OPENALEX_DEMO_FILES_PER_ENTITY', '0'))
csv_files = {
'institutions': {
'institutions': {
'name': os.path.join(CSV_DIR, 'institutions.csv.gz'),
'columns': [
'id', 'ror', 'display_name', 'country_code', 'type', 'homepage_url', 'image_url', 'image_thumbnail_url',
'display_name_acroynyms', 'display_name_alternatives', 'works_count', 'cited_by_count', 'works_api_url',
'updated_date'
]
},
'ids': {
'name': os.path.join(CSV_DIR, 'institutions_ids.csv.gz'),
'columns': [
'institution_id', 'openalex', 'ror', 'grid', 'wikipedia', 'wikidata', 'mag'
]
},
'geo': {
'name': os.path.join(CSV_DIR, 'institutions_geo.csv.gz'),
'columns': [
'institution_id', 'city', 'geonames_city_id', 'region', 'country_code', 'country', 'latitude',
'longitude'
]
},
'associated_institutions': {
'name': os.path.join(CSV_DIR, 'institutions_associated_institutions.csv.gz'),
'columns': [
'institution_id', 'associated_institution_id', 'relationship'
]
},
'counts_by_year': {
'name': os.path.join(CSV_DIR, 'institutions_counts_by_year.csv.gz'),
'columns': [
'institution_id', 'year', 'works_count', 'cited_by_count'
]
}
},
'authors': {
'authors': {
'name': os.path.join(CSV_DIR, 'authors.csv.gz'),
'columns': [
'id', 'orcid', 'display_name', 'display_name_alternatives', 'works_count', 'cited_by_count',
'last_known_institution', 'works_api_url', 'updated_date'
]
},
'ids': {
'name': os.path.join(CSV_DIR, 'authors_ids.csv.gz'),
'columns': [
'author_id', 'openalex', 'orcid', 'scopus', 'twitter', 'wikipedia', 'mag'
]
},
'counts_by_year': {
'name': os.path.join(CSV_DIR, 'authors_counts_by_year.csv.gz'),
'columns': [
'author_id', 'year', 'works_count', 'cited_by_count'
]
}
},
'concepts': {
'concepts': {
'name': os.path.join(CSV_DIR, 'concepts.csv.gz'),
'columns': [
'id', 'wikidata', 'display_name', 'level', 'description', 'works_count', 'cited_by_count', 'image_url',
'image_thumbnail_url', 'works_api_url', 'updated_date'
]
},
'ancestors': {
'name': os.path.join(CSV_DIR, 'concepts_ancestors.csv.gz'),
'columns': ['concept_id', 'ancestor_id']
},
'counts_by_year': {
'name': os.path.join(CSV_DIR, 'concepts_counts_by_year.csv.gz'),
'columns': ['concept_id', 'year', 'works_count', 'cited_by_count']
},
'ids': {
'name': os.path.join(CSV_DIR, 'concepts_ids.csv.gz'),
'columns': ['concept_id', 'openalex', 'wikidata', 'wikipedia', 'umls_aui', 'umls_cui', 'mag']
},
'related_concepts': {
'name': os.path.join(CSV_DIR, 'concepts_related_concepts.csv.gz'),
'columns': ['concept_id', 'related_concept_id', 'score']
}
},
'venues': {
'venues': {
'name': os.path.join(CSV_DIR, 'venues.csv.gz'),
'columns': [
'id', 'issn_l', 'issn', 'display_name', 'publisher', 'works_count', 'cited_by_count', 'is_oa',
'is_in_doaj', 'homepage_url', 'works_api_url', 'updated_date'
]
},
'ids': {
'name': os.path.join(CSV_DIR, 'venues_ids.csv.gz'),
'columns': ['venue_id', 'openalex', 'issn_l', 'issn', 'mag']
},
'counts_by_year': {
'name': os.path.join(CSV_DIR, 'venues_counts_by_year.csv.gz'),
'columns': ['venue_id', 'year', 'works_count', 'cited_by_count']
},
},
'works': {
'works': {
'name': os.path.join(CSV_DIR, 'works.csv.gz'),
'columns': [
'id', 'doi', 'title', 'display_name', 'publication_year', 'publication_date', 'type', 'cited_by_count',
'is_retracted', 'is_paratext', 'cited_by_api_url', 'abstract_inverted_index'
]
},
'host_venues': {
'name': os.path.join(CSV_DIR, 'works_host_venues.csv.gz'),
'columns': [
'work_id', 'venue_id', 'url', 'is_oa', 'version', 'license'
]
},
'alternate_host_venues': {
'name': os.path.join(CSV_DIR, 'works_alternate_host_venues.csv.gz'),
'columns': [
'work_id', 'venue_id', 'url', 'is_oa', 'version', 'license'
]
},
'authorships': {
'name': os.path.join(CSV_DIR, 'works_authorships.csv.gz'),
'columns': [
'work_id', 'author_position', 'author_id', 'institution_id', 'raw_affiliation_string'
]
},
'biblio': {
'name': os.path.join(CSV_DIR, 'works_biblio.csv.gz'),
'columns': [
'work_id', 'volume', 'issue', 'first_page', 'last_page'
]
},
'concepts': {
'name': os.path.join(CSV_DIR, 'works_concepts.csv.gz'),
'columns': [
'work_id', 'concept_id', 'score'
]
},
'ids': {
'name': os.path.join(CSV_DIR, 'works_ids.csv.gz'),
'columns': [
'work_id', 'openalex', 'doi', 'mag', 'pmid', 'pmcid'
]
},
'mesh': {
'name': os.path.join(CSV_DIR, 'works_mesh.csv.gz'),
'columns': [
'work_id', 'descriptor_ui', 'descriptor_name', 'qualifier_ui', 'qualifier_name', 'is_major_topic'
]
},
'open_access': {
'name': os.path.join(CSV_DIR, 'works_open_access.csv.gz'),
'columns': [
'work_id', 'is_oa', 'oa_status', 'oa_url'
]
},
'referenced_works': {
'name': os.path.join(CSV_DIR, 'works_referenced_works.csv.gz'),
'columns': [
'work_id', 'referenced_work_id'
]
},
'related_works': {
'name': os.path.join(CSV_DIR, 'works_related_works.csv.gz'),
'columns': [
'work_id', 'related_work_id'
]
},
},
}
def flatten_concepts():
with gzip.open(csv_files['concepts']['concepts']['name'], 'wt', encoding='utf-8') as concepts_csv, \
gzip.open(csv_files['concepts']['ancestors']['name'], 'wt', encoding='utf-8') as ancestors_csv, \
gzip.open(csv_files['concepts']['counts_by_year']['name'], 'wt', encoding='utf-8') as counts_by_year_csv, \
gzip.open(csv_files['concepts']['ids']['name'], 'wt', encoding='utf-8') as ids_csv, \
gzip.open(csv_files['concepts']['related_concepts']['name'], 'wt', encoding='utf-8') as related_concepts_csv:
concepts_writer = csv.DictWriter(
concepts_csv, fieldnames=csv_files['concepts']['concepts']['columns'], extrasaction='ignore'
)
concepts_writer.writeheader()
ancestors_writer = csv.DictWriter(ancestors_csv, fieldnames=csv_files['concepts']['ancestors']['columns'])
ancestors_writer.writeheader()
counts_by_year_writer = csv.DictWriter(counts_by_year_csv, fieldnames=csv_files['concepts']['counts_by_year']['columns'])
counts_by_year_writer.writeheader()
ids_writer = csv.DictWriter(ids_csv, fieldnames=csv_files['concepts']['ids']['columns'])
ids_writer.writeheader()
related_concepts_writer = csv.DictWriter(related_concepts_csv, fieldnames=csv_files['concepts']['related_concepts']['columns'])
related_concepts_writer.writeheader()
seen_concept_ids = set()
files_done = 0
for jsonl_file_name in glob.glob(os.path.join(SNAPSHOT_DIR, 'data', 'concepts', '*', '*.gz')):
print(jsonl_file_name)
with gzip.open(jsonl_file_name, 'r') as concepts_jsonl:
for concept_json in concepts_jsonl:
if not concept_json.strip():
continue
concept = json.loads(concept_json)
if not (concept_id := concept.get('id')) or concept_id in seen_concept_ids:
continue
seen_concept_ids.add(concept_id)
concepts_writer.writerow(concept)
if concept_ids := concept.get('ids'):
concept_ids['concept_id'] = concept_id
concept_ids['umls_aui'] = json.dumps(concept_ids.get('umls_aui'), ensure_ascii=False)
concept_ids['umls_cui'] = json.dumps(concept_ids.get('umls_cui'), ensure_ascii=False)
ids_writer.writerow(concept_ids)
if ancestors := concept.get('ancestors'):
for ancestor in ancestors:
if ancestor_id := ancestor.get('id'):
ancestors_writer.writerow({
'concept_id': concept_id,
'ancestor_id': ancestor_id
})
if counts_by_year := concept.get('counts_by_year'):
for count_by_year in counts_by_year:
count_by_year['concept_id'] = concept_id
counts_by_year_writer.writerow(count_by_year)
if related_concepts := concept.get('related_concepts'):
for related_concept in related_concepts:
if related_concept_id := related_concept.get('id'):
related_concepts_writer.writerow({
'concept_id': concept_id,
'related_concept_id': related_concept_id,
'score': related_concept.get('score')
})
files_done += 1
if FILES_PER_ENTITY and files_done >= FILES_PER_ENTITY:
break
def flatten_venues():
with gzip.open(csv_files['venues']['venues']['name'], 'wt', encoding='utf-8') as venues_csv, \
gzip.open(csv_files['venues']['ids']['name'], 'wt', encoding='utf-8') as ids_csv, \
gzip.open(csv_files['venues']['counts_by_year']['name'], 'wt', encoding='utf-8') as counts_by_year_csv:
venues_writer = csv.DictWriter(
venues_csv, fieldnames=csv_files['venues']['venues']['columns'], extrasaction='ignore'
)
venues_writer.writeheader()
ids_writer = csv.DictWriter(ids_csv, fieldnames=csv_files['venues']['ids']['columns'])
ids_writer.writeheader()
counts_by_year_writer = csv.DictWriter(counts_by_year_csv, fieldnames=csv_files['venues']['counts_by_year']['columns'])
counts_by_year_writer.writeheader()
seen_venue_ids = set()
files_done = 0
for jsonl_file_name in glob.glob(os.path.join(SNAPSHOT_DIR, 'data', 'venues', '*', '*.gz')):
print(jsonl_file_name)
with gzip.open(jsonl_file_name, 'r') as venues_jsonl:
for venue_json in venues_jsonl:
if not venue_json.strip():
continue
venue = json.loads(venue_json)
if not (venue_id := venue.get('id')) or venue_id in seen_venue_ids:
continue
seen_venue_ids.add(venue_id)
venue['issn'] = json.dumps(venue.get('issn'))
venues_writer.writerow(venue)
if venue_ids := venue.get('ids'):
venue_ids['venue_id'] = venue_id
venue_ids['issn'] = json.dumps(venue_ids.get('issn'))
ids_writer.writerow(venue_ids)
if counts_by_year := venue.get('counts_by_year'):
for count_by_year in counts_by_year:
count_by_year['venue_id'] = venue_id
counts_by_year_writer.writerow(count_by_year)
files_done += 1
if FILES_PER_ENTITY and files_done >= FILES_PER_ENTITY:
break
def flatten_institutions():
file_spec = csv_files['institutions']
with gzip.open(file_spec['institutions']['name'], 'wt', encoding='utf-8') as institutions_csv, \
gzip.open(file_spec['ids']['name'], 'wt', encoding='utf-8') as ids_csv, \
gzip.open(file_spec['geo']['name'], 'wt', encoding='utf-8') as geo_csv, \
gzip.open(file_spec['associated_institutions']['name'], 'wt', encoding='utf-8') as associated_institutions_csv, \
gzip.open(file_spec['counts_by_year']['name'], 'wt', encoding='utf-8') as counts_by_year_csv:
institutions_writer = csv.DictWriter(
institutions_csv, fieldnames=file_spec['institutions']['columns'], extrasaction='ignore'
)
institutions_writer.writeheader()
ids_writer = csv.DictWriter(ids_csv, fieldnames=file_spec['ids']['columns'])
ids_writer.writeheader()
geo_writer = csv.DictWriter(geo_csv, fieldnames=file_spec['geo']['columns'])
geo_writer.writeheader()
associated_institutions_writer = csv.DictWriter(
associated_institutions_csv, fieldnames=file_spec['associated_institutions']['columns']
)
associated_institutions_writer.writeheader()
counts_by_year_writer = csv.DictWriter(counts_by_year_csv, fieldnames=file_spec['counts_by_year']['columns'])
counts_by_year_writer.writeheader()
seen_institution_ids = set()
files_done = 0
for jsonl_file_name in glob.glob(os.path.join(SNAPSHOT_DIR, 'data', 'institutions', '*', '*.gz')):
print(jsonl_file_name)
with gzip.open(jsonl_file_name, 'r') as institutions_jsonl:
for institution_json in institutions_jsonl:
if not institution_json.strip():
continue
institution = json.loads(institution_json)
if not (institution_id := institution.get('id')) or institution_id in seen_institution_ids:
continue
seen_institution_ids.add(institution_id)
# institutions
institution['display_name_acroynyms'] = json.dumps(institution.get('display_name_acroynyms'), ensure_ascii=False)
institution['display_name_alternatives'] = json.dumps(institution.get('display_name_alternatives'), ensure_ascii=False)
institutions_writer.writerow(institution)
# idss
if institution_ids := institution.get('ids'):
institution_ids['institution_id'] = institution_id
ids_writer.writerow(institution_ids)
# geo
if institution_geo := institution.get('geo'):
institution_geo['institution_id'] = institution_id
geo_writer.writerow(institution_geo)
# associated_institutions
if associated_institutions := institution.get(
'associated_institutions', institution.get('associated_insitutions') # typo in api
):
for associated_institution in associated_institutions:
if associated_institution_id := associated_institution.get('id'):
associated_institutions_writer.writerow({
'institution_id': institution_id,
'associated_institution_id': associated_institution_id,
'relationship': associated_institution.get('relationship')
})
# counts_by_year
if counts_by_year := institution.get('counts_by_year'):
for count_by_year in counts_by_year:
count_by_year['institution_id'] = institution_id
counts_by_year_writer.writerow(count_by_year)
files_done += 1
if FILES_PER_ENTITY and files_done >= FILES_PER_ENTITY:
break
def flatten_authors():
file_spec = csv_files['authors']
with gzip.open(file_spec['authors']['name'], 'wt', encoding='utf-8') as authors_csv, \
gzip.open(file_spec['ids']['name'], 'wt', encoding='utf-8') as ids_csv, \
gzip.open(file_spec['counts_by_year']['name'], 'wt', encoding='utf-8') as counts_by_year_csv:
authors_writer = csv.DictWriter(
authors_csv, fieldnames=file_spec['authors']['columns'], extrasaction='ignore'
)
authors_writer.writeheader()
ids_writer = csv.DictWriter(ids_csv, fieldnames=file_spec['ids']['columns'])
ids_writer.writeheader()
counts_by_year_writer = csv.DictWriter(counts_by_year_csv, fieldnames=file_spec['counts_by_year']['columns'])
counts_by_year_writer.writeheader()
files_done = 0
for jsonl_file_name in glob.glob(os.path.join(SNAPSHOT_DIR, 'data', 'authors', '*', '*.gz')):
print(jsonl_file_name)
with gzip.open(jsonl_file_name, 'r') as authors_jsonl:
for author_json in authors_jsonl:
if not author_json.strip():
continue
author = json.loads(author_json)
if not (author_id := author.get('id')):
continue
# authors
author['display_name_alternatives'] = json.dumps(author.get('display_name_alternatives'), ensure_ascii=False)
author['last_known_institution'] = (author.get('last_known_institution') or {}).get('id')
authors_writer.writerow(author)
# ids
if author_ids := author.get('ids'):
author_ids['author_id'] = author_id
ids_writer.writerow(author_ids)
# counts_by_year
if counts_by_year := author.get('counts_by_year'):
for count_by_year in counts_by_year:
count_by_year['author_id'] = author_id
counts_by_year_writer.writerow(count_by_year)
files_done += 1
if FILES_PER_ENTITY and files_done >= FILES_PER_ENTITY:
break
def flatten_works():
file_spec = csv_files['works']
with gzip.open(file_spec['works']['name'], 'wt', encoding='utf-8') as works_csv, \
gzip.open(file_spec['host_venues']['name'], 'wt', encoding='utf-8') as host_venues_csv, \
gzip.open(file_spec['alternate_host_venues']['name'], 'wt', encoding='utf-8') as alternate_host_venues_csv, \
gzip.open(file_spec['authorships']['name'], 'wt', encoding='utf-8') as authorships_csv, \
gzip.open(file_spec['biblio']['name'], 'wt', encoding='utf-8') as biblio_csv, \
gzip.open(file_spec['concepts']['name'], 'wt', encoding='utf-8') as concepts_csv, \
gzip.open(file_spec['ids']['name'], 'wt', encoding='utf-8') as ids_csv, \
gzip.open(file_spec['mesh']['name'], 'wt', encoding='utf-8') as mesh_csv, \
gzip.open(file_spec['open_access']['name'], 'wt', encoding='utf-8') as open_access_csv, \
gzip.open(file_spec['referenced_works']['name'], 'wt', encoding='utf-8') as referenced_works_csv, \
gzip.open(file_spec['related_works']['name'], 'wt', encoding='utf-8') as related_works_csv:
works_writer = init_dict_writer(works_csv, file_spec['works'], extrasaction='ignore')
host_venues_writer = init_dict_writer(host_venues_csv, file_spec['host_venues'])
alternate_host_venues_writer = init_dict_writer(alternate_host_venues_csv, file_spec['alternate_host_venues'])
authorships_writer = init_dict_writer(authorships_csv, file_spec['authorships'])
biblio_writer = init_dict_writer(biblio_csv, file_spec['biblio'])
concepts_writer = init_dict_writer(concepts_csv, file_spec['concepts'])
ids_writer = init_dict_writer(ids_csv, file_spec['ids'], extrasaction='ignore')
mesh_writer = init_dict_writer(mesh_csv, file_spec['mesh'])
open_access_writer = init_dict_writer(open_access_csv, file_spec['open_access'])
referenced_works_writer = init_dict_writer(referenced_works_csv, file_spec['referenced_works'])
related_works_writer = init_dict_writer(related_works_csv, file_spec['related_works'])
files_done = 0
for jsonl_file_name in glob.glob(os.path.join(SNAPSHOT_DIR, 'data', 'works', '*', '*.gz')):
print(jsonl_file_name)
with gzip.open(jsonl_file_name, 'r') as works_jsonl:
for work_json in works_jsonl:
if not work_json.strip():
continue
work = json.loads(work_json)
if not (work_id := work.get('id')):
continue
# works
if (abstract := work.get('abstract_inverted_index')) is not None:
work['abstract_inverted_index'] = json.dumps(abstract, ensure_ascii=False)
works_writer.writerow(work)
# host_venues
if host_venue := (work.get('host_venue') or {}):
if host_venue_id := host_venue.get('id'):
host_venues_writer.writerow({
'work_id': work_id,
'venue_id': host_venue_id,
'url': host_venue.get('url'),
'is_oa': host_venue.get('is_oa'),
'version': host_venue.get('version'),
'license': host_venue.get('license'),
})
# alternate_host_venues
if alternate_host_venues := work.get('alternate_host_venues'):
for alternate_host_venue in alternate_host_venues:
if venue_id := alternate_host_venue.get('id'):
alternate_host_venues_writer.writerow({
'work_id': work_id,
'venue_id': venue_id,
'url': alternate_host_venue.get('url'),
'is_oa': alternate_host_venue.get('is_oa'),
'version': alternate_host_venue.get('version'),
'license': alternate_host_venue.get('license'),
})
# authorships
if authorships := work.get('authorships'):
for authorship in authorships:
if author_id := authorship.get('author', {}).get('id'):
institutions = authorship.get('institutions')
institution_ids = [i.get('id') for i in institutions]
institution_ids = [i for i in institution_ids if i]
institution_ids = institution_ids or [None]
for institution_id in institution_ids:
authorships_writer.writerow({
'work_id': work_id,
'author_position': authorship.get('author_position'),
'author_id': author_id,
'institution_id': institution_id,
'raw_affiliation_string': authorship.get('raw_affiliation_string'),
})
# biblio
if biblio := work.get('biblio'):
biblio['work_id'] = work_id
biblio_writer.writerow(biblio)
# concepts
for concept in work.get('concepts'):
if concept_id := concept.get('id'):
concepts_writer.writerow({
'work_id': work_id,
'concept_id': concept_id,
'score': concept.get('score'),
})
# ids
if ids := work.get('ids'):
ids['work_id'] = work_id
ids_writer.writerow(ids)
# mesh
for mesh in work.get('mesh'):
mesh['work_id'] = work_id
mesh_writer.writerow(mesh)
# open_access
if open_access := work.get('open_access'):
open_access['work_id'] = work_id
open_access_writer.writerow(open_access)
# referenced_works
for referenced_work in work.get('referenced_works'):
if referenced_work:
referenced_works_writer.writerow({
'work_id': work_id,
'referenced_work_id': referenced_work
})
# related_works
for related_work in work.get('related_works'):
if related_work:
related_works_writer.writerow({
'work_id': work_id,
'related_work_id': related_work
})
files_done += 1
if FILES_PER_ENTITY and files_done >= FILES_PER_ENTITY:
break
def init_dict_writer(csv_file, file_spec, **kwargs):
writer = csv.DictWriter(
csv_file, fieldnames=file_spec['columns'], **kwargs
)
writer.writeheader()
return writer
if __name__ == '__main__':
flatten_concepts()
flatten_venues()
flatten_institutions()
flatten_authors()
flatten_works()
@portisto
Copy link

any suggestion how to parallelise the flattening workload per given dataset (for authors and/or works)?

@JeremyBrent
Copy link

Hi @richard-orr, what is the motivation for using the function init_dict_writer() in flatten_works() but csv.DictWriter() in all other entities?

@richard-orr
Copy link
Author

richard-orr commented Sep 27, 2022

@JeremyBrent > Hi @richard-orr, what is the motivation for using the function init_dict_writer() in flatten_works() but csv.DictWriter() in all other entities?

No particular reason, both versions do the same thing. init_dict_writer is a very short 2-line function and it wasn't until I got to Works and needed to open 11 writers that I got tired of repeating them. I just never went back and replaced the existing instances of

 geo_writer = csv.DictWriter(geo_csv, fieldnames=file_spec['geo']['columns'])
 geo_writer.writeheader()

with geo_writer = init_dict_writer(geo_csv, file_spec['geo']) for consistency. I'm going to make a few changes to address a question about parallelism above and I'll clean up some inconsistencies like this at that time.

@richard-orr
Copy link
Author

richard-orr commented Sep 27, 2022

@portisto > any suggestion how to parallelise the flattening workload per given dataset (for authors and/or works)?

The easiest way would probably be to use multiprocessing.Pool. Instead of a loop like

for jsonl_file_name in glob.glob(os.path.join(SNAPSHOT_DIR, 'data', 'works', '*', '*.gz')):
    # flatten jsonl_file_name

You would move the flattening work into a function and use the Pool to handle the files in parallel:

from multiprocessing import Pool

NUM_THREADS=4

def flatten_file(jsonl_file_name):
    # flatten jsonl_file_name


json_files = glob.glob(os.path.join(SNAPSHOT_DIR, 'data', 'works', '*', '*.gz')):

with Pool(processes=NUM_THREADS) as p:
    p.map(flatten_file, json_files))

The trouble is that flatten_file can't write to the same set of CSV files in each thread; you would need to open a separate csv file for each input file or use a Lock to ensure that complete lines are written separately and don't overlap.

I didn't parallelize this because I didn't want it to eat up all the CPU on unsuspecting users' machines, but I'd like to come back to it and try the above while keeping the default number of threads at 1.

@MarioZZJ
Copy link

Hi @richard-orr , I found that there may be encoding problems in your script. After trying your script, Chinese characters turned out to be in unicode like \u9678\u606d\u8559 in generated CSVs, thus causing some parsing problems in my research.

I finally found out how to fix this. Though csvs were opened with utf-8, the json.dumps() functions would write in unicode, if you don't specify ensure_ascii=False. So I suggest adding this into all json.dumps().

@almugabo
Copy link

@portisto > any suggestion how to parallelise the flattening workload per given dataset (for authors and/or works)?

if it helps
based on Richard's scripts, I have a parallized script to flatten works here
https://github.com/almugabo/openalex_qa/tree/main/___db_scripts
it takes about 3 hours with 20 processes on my machine.

@JeremyBrent
Copy link

Hi @richard-orr, what is the purpose of the following:
"""
FILES_PER_ENTITY = int(os.environ.get('OPENALEX_DEMO_FILES_PER_ENTITY', '0'))
....
files_done += 1
if FILES_PER_ENTITY and files_done >= FILES_PER_ENTITY:
break
"""

@JeremyBrent
Copy link

@almugabo your parallel work function works great! Thanks for providing access to the community. One question about it, you have a seen_work_ids set, but if each input file is going to separate core, and they are truly parallel processes, is this set doing anything? Theoretically this set should never be > len(works_in_one_file). This set would be able to handle duplicates within one input file but not across all of them, is that correct?

@richard-orr
Copy link
Author

@MarioZZJ

Hi @richard-orr , I found that there may be encoding problems in your script. After trying your script, Chinese characters turned out to be in unicode like \u9678\u606d\u8559 in generated CSVs, thus causing some parsing problems in my research.

I finally found out how to fix this. Though csvs were opened with utf-8, the json.dumps() functions would write in unicode, if you don't specify ensure_ascii=False. So I suggest adding this into all json.dumps().

Thank you! Most JSON parsers should be able to read the unicode escape sequences (\u9678\u606d\u8559) just as well as UTF-8 encoded characters (陸恭蕙) but the latter is much more readable. I followed your suggestion for text fields.

@richard-orr
Copy link
Author

@JeremyBrent

Hi @richard-orr, what is the purpose of the following: """ FILES_PER_ENTITY = int(os.environ.get('OPENALEX_DEMO_FILES_PER_ENTITY', '0')) .... files_done += 1 if FILES_PER_ENTITY and files_done >= FILES_PER_ENTITY: break """

I added those lines to help with debugging the script. Since it takes hours to flatten the complete dataset, I wanted to be able to do a partial run like

$ OPENALEX_DEMO_FILES_PER_ENTITY=5 python flatten-openalex-jsonl.py

and have the script stop early but cleanly, after a certain number of input files. Unless you set the OPENALEX_DEMO_FILES_PER_ENTITY environment variable they won't have any effect.

@almugabo
Copy link

almugabo commented Nov 7, 2022

Hi Jeremy, sorry for late reply. Correct. The seen_work_ids does nothing in the code. I had initially planned to use it to verify (and delete) duplicates in the results folders but finally didn't need to.

@MarioZZJ
Copy link

Hi @richard-orr , I found there's a typo in your script, 'acroynyms' should be 'acronyms':

  • line 18
'display_name_acronyms', 'display_name_alternatives', 'works_count', 'cited_by_count', 'works_api_url',
  • line 356
institution['display_name_acronyms'] = json.dumps(institution.get('display_name_acronyms'), ensure_ascii=False)

I suggest fixing them, or the Writer would write 'none' for all display_name_acronyms.

ps. also found typo in the figure at postgres-schema-diagram.

@Noietch
Copy link

Noietch commented Nov 28, 2022

There is something wrong when i try to flatten the data

Traceback (most recent call last):
  File "convert.py", line 594, in <module>
    flatten_venues()
  File "convert.py", line 298, in flatten_venues
    ids_writer.writerow(venue_ids)
  File "/usr/lib/python3.8/csv.py", line 154, in writerow
    return self.writer.writerow(self._dict_to_list(rowdict))
  File "/usr/lib/python3.8/csv.py", line 149, in _dict_to_list
    raise ValueError("dict contains fields not in fieldnames: "
ValueError: dict contains fields not in fieldnames: 'wikidata', 'fatcat'

@richard-orr Hi, i found the method which can probably fix it by adding the 'extrasaction='ignore'' to all the csv writers of flatten_venues function

@TEC-IST
Copy link

TEC-IST commented Dec 11, 2022

Adapted for MySQL / MariaDB, using tab delimiters and each content type runs in parallel: https://github.com/TEC-IST/openalex-mysql-mariadb-toolkit/blob/main/flatten-works-to-tsv.py

@caseydm
Copy link

caseydm commented Mar 14, 2023

This script has moved here: https://github.com/ourresearch/openalex-documentation-scripts/blob/main/flatten-openalex-jsonl.py

Changes are:

  • venues renamed to sources
  • add new publishers entity
  • supports new locations schema within works (primary_location, locations, best_oa_location)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment