Skip to content

Instantly share code, notes, and snippets.

anonymous
anonymous / gist:1c6198cd663165d2dd53
Created September 7, 2015 08:07
Plot ROC Curve with Cut-Off Markers
def plot_roc(y, probs, threshmarkers=None):
fpr, tpr, thresh = sklearn.metrics.roc_curve(y, probs)
plt.plot(fpr, tpr, lw=2)
if threshmarkers is None:
threshmarkers = np.linspace(0, 1, 11)
for t in threshmarkers:
k = np.abs(thresh-t).argmin()
x = fpr[k]
y = tpr[k]
@napsternxg
napsternxg / linearReg.py
Created July 31, 2015 16:22
Implementing linear regression in keras
"""
Author: Shubhanshu Mishra
Posted this on the keras issue tracker at: https://github.com/fchollet/keras/issues/108
Implementing a linear regression using Keras.
"""
from keras.models import Sequential
from keras.layers.core import Dense, Activation
model = Sequential()
@slaypni
slaypni / xgb.py
Last active September 24, 2021 17:35
A wrapper class of XGBoost for scikit-learn
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import sys
import math
import numpy as np
sys.path.append('xgboost/wrapper/')
import xgboost as xgb
@adewes
adewes / README.md
Last active August 12, 2024 20:19
Ebay Ads - Bot. Because who wants to write messages by hand...

To use this bot:

  • Download ads_bot.py and requirements.txt.
  • Type pip install -r requirements.txt to install the requirements.
  • Fill out the required information in the Python file.
  • Ideally, create a (free) Slack account and set up a web hook to receive notifications from the bot.
  • Run the script :)
  • Relax and be ready to answer incoming calls :D
@chrisdubois
chrisdubois / submission.py
Created March 23, 2015 17:19
Starter code for Otto Group Product Classification
import graphlab as gl
import math
import random
train = gl.SFrame.read_csv('data/train.csv')
test = gl.SFrame.read_csv('data/test.csv')
del train['id']
def make_submission(m, test, filename):
preds = m.predict_topk(test, output_type='probability', k=9)
@aronwc
aronwc / lda.py
Last active April 30, 2024 06:54
Example using GenSim's LDA and sklearn
""" Example using GenSim's LDA and sklearn. """
import numpy as np
from gensim import matutils
from gensim.models.ldamodel import LdaModel
from sklearn import linear_model
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import CountVectorizer
@mrdwab
mrdwab / stratified.R
Last active April 27, 2024 19:57
Stratified random sampling from a `data.frame` in R
stratified <- function(df, group, size, select = NULL,
replace = FALSE, bothSets = FALSE) {
if (is.null(select)) {
df <- df
} else {
if (is.null(names(select))) stop("'select' must be a named list")
if (!all(names(select) %in% names(df)))
stop("Please verify your 'select' argument")
temp <- sapply(names(select),
function(x) df[[x]] %in% select[[x]])
@aras-p
aras-p / preprocessor_fun.h
Last active October 9, 2025 17:55
Things to commit just before leaving your job
// Just before switching jobs:
// Add one of these.
// Preferably into the same commit where you do a large merge.
//
// This started as a tweet with a joke of "C++ pro-tip: #define private public",
// and then it quickly escalated into more and more evil suggestions.
// I've tried to capture interesting suggestions here.
//
// Contributors: @r2d2rigo, @joeldevahl, @msinilo, @_Humus_,
// @YuriyODonnell, @rygorous, @cmuratori, @mike_acton, @grumpygiant,
# -*- coding: utf-8 -*-
""" Small script that shows hot to do one hot encoding
of categorical columns in a pandas DataFrame.
See:
http://scikit-learn.org/dev/modules/generated/sklearn.preprocessing.OneHotEncoder.html#sklearn.preprocessing.OneHotEncoder
http://scikit-learn.org/dev/modules/generated/sklearn.feature_extraction.DictVectorizer.html
"""
import pandas
import random
#-*- coding:utf-8 - *-
def load_dataset():
"Load the sample dataset."
return [[1, 3, 4], [2, 3, 5], [1, 2, 3, 5], [2, 5]]
def createC1(dataset):
"Create a list of candidate item sets of size one."