Instantly share code, notes, and snippets.

What would you like to do?
Laymans explanation of delimited continuations with examples of using them for exception handling and nondeterministic programming.

Delimited Continuations

Delimited continuations manipulate the control flow of programs. Similar to control structures like conditionals or loops they allow to deviate from a sequential flow of control.

We use exception handling as another example for control flow manipulation and later show how to implement it using delimited continuations. Finally, we show that nondeterminism can also be expressed using delimited continuations.

Exception Handling

Many programming languages provide a mechanism to throw and handle exceptions. When an exception is thrown, the normal flow of control is aborted and a surrounding exception handler is invoked. Exception handling is built into many languages using special keywords to throw and catch exceptions. A (hypothetical) language may provide the following syntax:

try A catch (\e -> B)

The result of such an expression is the result of A or, if A throws an exception e, the result of B.

For example, the result of

try (17+4) catch (\e -> 42)

is 21 and the result of

try (17 + throw 4) catch (\e -> 42 + e)

is 46.

A call to throw transfers control to the surrounding try/catch block which determines the final result. Because try/catch and throw manipulate control flow, they may be called control operators.

Delimited Continuations

Let's consider a different kind of control operators. Say, our language provides the following syntax:

capture A
escape (\continue -> B)

The result of capture A is the result of A unless escape is called inside A. If escape is called inside A then the result of capture A is the result of B. Inside B it is possible to continue the computation of A: if B contains a call continue C then the computation of A is continued using C as result of the call to escape.

The way capture and escape modify control flow is best explained using examples.

The result of

capture (2 * escape (\_ -> 42))

is 42 because calling escape inside capture changes the result of the call to capture to the result of the function passed to escape. In this case, the original computation inside capture is discarded and the result is replaced by the result of a new computation.

We can also continue the original computation inside capture by using the continue argument of the function passed to escape. The result of

capture (2 * escape (\continue -> 17 + continue 4))

is 25 because the escape-call replaces the result of the capture-call with 17+x where x is the result of the argument of capture using 4 as result of the escape-call. In the expression 17 + continue 4 the result of continue 4 is 2 * 4, so the result of the whole expression is 17 + (2 * 4) = 25.

These control operators may seem confusing to the uninitiated but they are quite powerful. For example, we can use them to implement exception handling.

throw e = escape (\_ -> (\h -> h e))
try a catch h = (capture (let x = a in \_ -> x)) h

The implementation of throw uses escape to abort the surrounding computation. The passed function ignores the given continuation and yields a function that takes an exception handler and applies it to the thrown exception.

The implementation of catch uses capture to evaluate the argument a (suppose our hypothetical language is strict and always evaluates let-bound variables.) If throw is not called inside a then the call to capture returns a function that ignores the exception handler and yields the result of a.

Using the definitions of throw and try/catch in terms of delimited continuations, the example

try (17+4) catch (\e -> 42)

from above translates into

(capture (let x = 17+4 in (\_ -> x))) (\e -> 42)

which results in

(\_ -> 21) (\e -> 42)
  = 21

The other example

try (17 + throw 4) catch (\e -> 42 + e)

translates into

(capture (let x = 17 + escape (\_ -> (\h -> h 4)) in \_ -> x)) (\e -> 42 + e)

which results in

(\h -> h 4) (\e -> 42 + e)
  = (\e -> 42 + e) 4
  = 42 + 4
  = 46

as intended.

Nondeterminism and Encapsulated Search

Nondeterministic programs make use of an operator ? to nondeterministically choose one of its argument. For example

0 ? 1

evaluates to 0 or 1 nondeterministically.

In order to collect all values of a nondeterministic expression a nondeterministic language may provide the following syntax

values (\() -> A)

The result of such an expression is a set of all possibly nondeterministic results of A. for example, the result of

values (\() -> 0 ? 1)

is the set {0,1} because 0 and 1 are all possible results of 0 ? 1.

We can implement ? and values using delimited continuations:

x ? y = escape (\continue -> continue x ∪ continue y)
values f = capture {f ()}

The definition of ? uses the passed continuation twice to execute the surrounding computation with either of the arguments x and y. It then collects the results of both computations using set union. This requires that the surrounding computation returns a set which is ensured by the implementation of values which uses a singleton set as argument of capture.

Using these definitions, the example

values (\() -> 0 ? 1)

from above translates into

capture {(\() -> escape (\continue -> continue 0 ∪ continue 1)) ()}

which results in

capture {escape (\continue -> continue 0 ∪ continue 1))}
  = {0} ∪ {1}
  = {0,1}

as intended.

The definition of ? using delimited continuations above is problematic. Consider the following derivation:

values (\() -> 1?(2?3))
  = capture {1?(2?3)}
  = capture {escape (\c1 -> c1 1 ∪ c1 (escape (\c2 -> c2 2 ∪ c2 3)))}
  = capture ({1} ∪ {escape (\c2 -> c2 2 ∪ c2 3)})
  = ({1} ∪ {2}) ∪ ({1} ∪ {3})
  = {1,2,3}

While the result is correct (because sets abstract from result miltiplicity), it seems suspicious that the result 1 is included twice. It gets even more problematic if we incorporate failure. Apart from nondeterministic choice, nondeterministic languages also provide an operation failure that does not have any results. For example

values (\() -> failure)

should represent the empty set . Moreover, if failure is part of a computation, as in 1 + failure, then the result of this computation should itself fail to produce results. On the other hand, if failure is an argument of ? then there might still be results from the other argument of ?.

We can define failure in terms of delimited continuations.

failure = escape (\_ -> ∅)

With this definition the expression 1 + failure indeed does not yield any results:

values (\() -> 1 + failure)
  = capture {1 + escape (\_ -> ∅)}
  = ∅

However, the expression failure ? 42 also does not yield any results:

values (\() -> failure ? 42)
  = capture {failure ? 42}
  = capture {escape (\c -> c failure ∪ c 42)}
  = capture ({failure} ∪ {42})
  = capture ({escape (\_ -> ∅)} ∪ {42})
  = ∅

This result is not intended. Instead the result should be {42}.

We can fix both the duplication of nested nondeterminism above and the unintended failure observed here by using a different definition of ?:

x ? y = escape (\continue -> capture (continue x) ∪ capture (continue y))

Here, we use additional calls to capture to delimit the effect of failure or nondeterminism in the arguments of set union.

With this new definition we can proceed as follows to investigate the problematic examples:

values (\() -> 1?(2?3))
  = capture {1?(2?3)}
  = capture {escape (\c1 -> capture (c1 1) ∪ capture (c1 (escape (\c2 -> capture (c2 2) ∪ capture (c2 3)))))}
  = capture {1} ∪ capture {escape (\c2 -> capture (c2 2) ∪ capture (c2 3))}
  = {1} ∪ (capture {2} ∪ capture {3})
  = {1,2,3}

Note that now the result 1 is not duplicated anymore because {1} is not part of the delimited continuation c2. Regarding the unintended failure consider the following derivation:

values (\() -> failure ? 42)
  = capture {failure ? 42}
  = capture {escape (\c -> capture (c failure) ∪ capture (c 42))}
  = capture {failure} ∪ capture {42}
  = capture {escape (\_ -> ∅)} ∪ {42}
  = ∅ ∪ {42}
  = {42}

Now, the result is {42} as intended.

Further Reading

Usually, the control operators escape and capture are called shift and reset, respectively. A more detailed introduction to delimited continuations with shift and reset can be found in the tutorial notes of a tutorial given at the Continuation Workshop 2011.


This comment has been minimized.

Bost commented Apr 7, 2018

Hi, what's the meaning of () ? For the first time it appears in the expression:

values (\() -> A)

but no explanation is given what it means...


This comment has been minimized.

kentor commented Apr 17, 2018

@Bost a function that takes no arguments (as opposed to one argument: like (\_ -> x) or (\continue -> continue 4))


This comment has been minimized.

rodrigodesalvobraz commented Sep 8, 2018

This is excellent, thank you. It's the first explanation I see that presents actually useful examples and does not get lost in details about continuation-passing style, tail recursion, and specific programming language details.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment