Skip to content

Instantly share code, notes, and snippets.

@slurrybowl
Created September 26, 2017 02:48
Show Gist options
  • Star 1 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save slurrybowl/50c1a05b750f6362d32ddea7c3cdcf23 to your computer and use it in GitHub Desktop.
Save slurrybowl/50c1a05b750f6362d32ddea7c3cdcf23 to your computer and use it in GitHub Desktop.
#include "FastLED.h"
FASTLED_USING_NAMESPACE
#if FASTLED_VERSION < 3001000
#error "Requires FastLED 3.1 or later; check github for latest code."
#endif
#define DATA_PIN 4
//#define CLK_PIN 4
#define LED_TYPE WS2811
#define COLOR_ORDER GRB
#define NUM_LEDS 240
CRGB leds[NUM_LEDS];
CRGBPalette16 gPal;
bool gReverseDirection = false;
#define BRIGHTNESS 95
#define FRAMES_PER_SECOND 120
#include "Button.h" // Include Button library
const int buttonPin = 6; // Set digital pin used with debounced pushbutton
Button myButton(buttonPin, true, true, 50); // Declare the butto
void setup() {
delay(3000); // 3 second delay for recovery
// tell FastLED about the LED strip configuration
FastLED.addLeds<LED_TYPE,DATA_PIN,COLOR_ORDER>(leds, NUM_LEDS).setCorrection(TypicalLEDStrip);
//FastLED.addLeds<LED_TYPE,DATA_PIN,CLK_PIN,COLOR_ORDER>(leds, NUM_LEDS).setCorrection(TypicalLEDStrip);
// set master brightness control
FastLED.setBrightness(BRIGHTNESS);
gPal = CRGBPalette16( CRGB::Green, CRGB::Black, CRGB::Blue, CRGB::Aqua);
}
// List of patterns to cycle through. Each is defined as a separate function below.
typedef void (*SimplePatternList[])();
//SimplePatternList gPatterns = { rainbow,juggle_Bchill, rainbowuniform, rainbowWEIRD, rainbowWithGlitter, confetti_GB, confetti, juggle, juggle_B, juggle_R, juggle_G, sinelon };
SimplePatternList gPatterns = { juggle_B_less,juggle_B_more,juggle_B_lots,juggle_Bsteady, confetti_GB, juggle_G, juggle_R, Fire2012WithPalette };
uint8_t gCurrentPatternNumber = 0; // Index number of which pattern is current
uint8_t gHue = 0; // rotating "base color" used by many of the patterns
void loop()
{
// Call the current pattern function once, updating the 'leds' array
gPatterns[gCurrentPatternNumber]();
// send the 'leds' array out to the actual LED strip
FastLED.show();
// insert a delay to keep the framerate modest
FastLED.delay(1000/FRAMES_PER_SECOND);
// do some periodic updates
EVERY_N_MILLISECONDS( 20 ) { gHue++; } // slowly cycle the "base color" through the rainbow
//EVERY_N_SECONDS( 10 ) { nextPattern(); } // change patterns periodically
readbutton(); // check for button press
}
#define ARRAY_SIZE(A) (sizeof(A) / sizeof((A)[0]))
void nextPattern()
{
// add one to the current pattern number, and wrap around at the end
gCurrentPatternNumber = (gCurrentPatternNumber + 1) % ARRAY_SIZE( gPatterns);
}
void rainbow()
{
// FastLED's built-in rainbow generator
fill_rainbow( leds, NUM_LEDS, gHue, 7);
}
void rainbowuniform()
{
// FastLED's built-in rainbow generator
fill_rainbow( leds, NUM_LEDS, gHue, 2);
}
void rainbowWEIRD()
{
// FastLED's built-in rainbow generator
fill_rainbow( leds, NUM_LEDS, gHue, 30);
}
void sinelon()
{
// a colored dot sweeping back and forth, with fading trails
fadeToBlackBy( leds, NUM_LEDS, 20);
int pos = beatsin16(13,0,NUM_LEDS);
leds[pos] += CHSV( gHue, 255, 192);
}
void confetti()
{
// random colored speckles that blink in and fade smoothly
fadeToBlackBy( leds, NUM_LEDS, 10);
int pos = random16(NUM_LEDS);
leds[pos] += CHSV( gHue + random8(64), 20, 250);
}
void rainbowWithGlitter()
{
// built-in FastLED rainbow, plus some random sparkly glitter
rainbow();
addGlitter(80);
}
void addGlitter( fract8 chanceOfGlitter)
{
if( random8() < chanceOfGlitter) {
leds[ random16(NUM_LEDS) ] += CRGB::White;
}
}
void juggle_R() {
// eight colored dots, weaving in and out of sync with each other
fadeToBlackBy( leds, NUM_LEDS, 20);
byte dothue = 5;
for( int i = 0; i < 8; i++) {
leds[beatsin16(i+1,0,NUM_LEDS)] |= CHSV(dothue, 200, 100);
//dothue += 32;
}
}
void juggle_G() {
// eight colored dots, weaving in and out of sync with each other
fadeToBlackBy( leds, NUM_LEDS, 200);
byte dothue = 96;
for( int i = 0; i < 8; i++) {
leds[beatsin16(i+1,0,NUM_LEDS)] |= CHSV(dothue, 200, 100);
//dothue += 32;
}
}
void juggle_B_less() {
// eight colored dots, weaving in and out of sync with each other
fadeToBlackBy( leds, NUM_LEDS, 240);
byte dothue = 160;
for( int i = 0; i < 8; i++) {
leds[beatsin16(i+1,0,NUM_LEDS)] |= CHSV(dothue, 200, 100);
//dothue += 32;
}
}
void juggle_B_more() {
// eight colored dots, weaving in and out of sync with each other
fadeToBlackBy( leds, NUM_LEDS, 100);
byte dothue = 160;
for( int i = 0; i < 8; i++) {
leds[beatsin16(i+1,0,NUM_LEDS)] |= CHSV(dothue, 200, 100);
//dothue += 32;
}
}
void juggle_B_lots() {
// eight colored dots, weaving in and out of sync with each other
fadeToBlackBy( leds, NUM_LEDS, 10);
byte dothue = 160;
for( int i = 0; i < 8; i++) {
leds[beatsin16(i+1,0,NUM_LEDS)] |= CHSV(dothue, 200, 100);
//dothue += 32;
}
}
void juggle_Bsteady() {
// eight colored dots, weaving in and out of sync with each other
fadeToBlackBy( leds, NUM_LEDS, 1);
byte dothue = 160;
for( int i = 0; i < 240; i++) {
leds[beatsin16(i+200,0,NUM_LEDS)] |= CHSV(dothue, 200, 55);
//dothue += 32;
}
}
void juggle() {
// eight colored dots, weaving in and out of sync with each other
fadeToBlackBy( leds, NUM_LEDS, 20);
byte dothue = 0;
for( int i = 0; i < 8; i++) {
leds[beatsin16(i+7,0,NUM_LEDS)] |= CHSV(dothue, 200, 100);
dothue += 32;
}
}
void confetti_GB()
{
// random colored speckles, Green and Blue hues only
// Green = 96, Blue = 160
uint8_t p = 30; // What percentage of the time to make speckles. [Range 0-100]
fadeToBlackBy( leds, NUM_LEDS, 10);
if (random8(100) < p) {
int pos = random16(NUM_LEDS);
uint8_t hue = random8(2); // randomly chooses a 0 or 1
if (hue == 0) {
hue = random8(92,111); // pick a hue somewhere in the green zone
} else {
hue = random8(156,165); // pick a hue somewhere in the blue zone
}
leds[pos] += CHSV( hue, random8(200,240), 100);
}
}//end confetti_GB
}
// Fire2012 by Mark Kriegsman, July 2012
// as part of "Five Elements" shown here: http://youtu.be/knWiGsmgycY
////
// This basic one-dimensional 'fire' simulation works roughly as follows:
// There's a underlying array of 'heat' cells, that model the temperature
// at each point along the line. Every cycle through the simulation,
// four steps are performed:
// 1) All cells cool down a little bit, losing heat to the air
// 2) The heat from each cell drifts 'up' and diffuses a little
// 3) Sometimes randomly new 'sparks' of heat are added at the bottom
// 4) The heat from each cell is rendered as a color into the leds array
// The heat-to-color mapping uses a black-body radiation approximation.
//
// Temperature is in arbitrary units from 0 (cold black) to 255 (white hot).
//
// This simulation scales it self a bit depending on NUM_LEDS; it should look
// "OK" on anywhere from 20 to 100 LEDs without too much tweaking.
//
// I recommend running this simulation at anywhere from 30-100 frames per second,
// meaning an interframe delay of about 10-35 milliseconds.
//
// Looks best on a high-density LED setup (60+ pixels/meter).
//
//
// There are two main parameters you can play with to control the look and
// feel of your fire: COOLING (used in step 1 above), and SPARKING (used
// in step 3 above).
//
// COOLING: How much does the air cool as it rises?
// Less cooling = taller flames. More cooling = shorter flames.
// Default 55, suggested range 20-100
#define COOLING 100
// SPARKING: What chance (out of 255) is there that a new spark will be lit?
// Higher chance = more roaring fire. Lower chance = more flickery fire.
// Default 120, suggested range 50-200.
#define SPARKING 120
void Fire2012WithPalette()
{
// Array of temperature readings at each simulation cell
static byte heat[NUM_LEDS];
// Step 1. Cool down every cell a little
for( int i = 0; i < NUM_LEDS; i++) {
heat[i] = qsub8( heat[i], random8(0, ((COOLING * 10) / NUM_LEDS) + 2));
}
// Step 2. Heat from each cell drifts 'up' and diffuses a little
for( int k= NUM_LEDS - 1; k >= 2; k--) {
heat[k] = (heat[k - 1] + heat[k - 2] + heat[k - 2] ) / 3;
}
// Step 3. Randomly ignite new 'sparks' of heat near the bottom
if( random8() < SPARKING ) {
int y = random8(7);
heat[y] = qadd8( heat[y], random8(160,255) );
}
// Step 4. Map from heat cells to LED colors
for( int j = 0; j < NUM_LEDS; j++) {
// Scale the heat value from 0-255 down to 0-240
// for best results with color palettes.
byte colorindex = scale8( heat[j], 240);
CRGB color = ColorFromPalette( gPal, colorindex);
int pixelnumber;
if( gReverseDirection ) {
pixelnumber = (NUM_LEDS-1) - j;
} else {
pixelnumber = j;
}
leds[pixelnumber] = color;
}
}
//BUTTON STUFF
//---------Function to read the button and do something----------
void readbutton() {
myButton.read();
if(myButton.wasPressed()) {
nextPattern(); // Change to the next pattern
}
}//end_readbutton
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment