Skip to content

Instantly share code, notes, and snippets.

View gist:414842
ENTITY book_lines
int book_line_id,
string line,
int source,
int linenum,
int created_at,
int updated_at
PRIMARY(linenum, source)
View gist:611203
#include "algebra3.h"
#include <iostream>
#include <cmath>
using namespace std;
static inline bool refract(const vec3& N, const vec3& I, const double n1, const double n2, vec3& result) {
double n = n1 / n2;
double cosI = -(N * I);
double sinT2 = n * n * ( 1.0 - cosI * cosI );
View gist:802493
diff --git a/src/jpdr/server/support/ b/src/jpdr/server/support/
index 425fa30..7bb4ddb 100644
--- a/src/jpdr/server/support/
+++ b/src/jpdr/server/support/
@@ -16,8 +16,9 @@ import java.lang.reflect.InvocationTargetException;
import java.lang.reflect.Method;
-import java.nio.file.FileAlreadyExistsException;
-import java.nio.file.Path;
View cpux86.js
PC Emulator
Copyright (c) 2011 Fabrice Bellard
Redistribution or commercial use is prohibited without the author's
"use strict";
var aa;
View gist:1062386
val d = DateFormat.getDateInstance(DateFormat.SHORT).parse("11/20/1988")
val c = Calendar.getInstance
c.add(Calendar.MONTH, 5)
val d1 = c.getTime()
res8: java.lang.String = Thu Apr 20 00:00:00 PDT 1989
import org.java_websocket.WebSocketImpl;
import org.java_websocket.client.WebSocketClient;
import org.java_websocket.handshake.ServerHandshake;
public class TestWS {
import numpy as np
import itertools as it
def normalize(x):
return x / np.sum(x)
def normalizerow(x):
return (x.T / np.sum(x, axis=1)).T
def normalizecol(x):
View gist:8074313
stephentu@peavey:~$ mkdir tester
stephentu@peavey:~$ cd tester
stephentu@peavey:~/tester$ git init
Initialized empty Git repository in /Users/stephentu/tester/.git/
stephentu@peavey:~/tester(master)$ touch foo.c
stephentu@peavey:~/tester(master)$ git add foo.c
stephentu@peavey:~/tester(master)$ git commit -m 'first commit'
[master (root-commit) 3e51a35] first commit
0 files changed
create mode 100644 foo.c
View gist:9405802
// computes and steps along the gradient of the SVM objective function: Sum_i HingeLoss(1.0 - normal^Tx_i y_i) + ||w||_2^2
public static double[] SupportVectorStep(PINQueryable<Example> input, double[] normal, double epsilon)
// select the examples that are currently mis-labeled by the normal vector. also add some negative normal for our regularizer
var errors = input.Where(x => x.label * x.vector.Select((v, i) => v * normal[i]).Sum() < 1.0)
.Concat(Enumerable.Repeat(new Example(normal, -1.0), 10).AsQueryable());
// fold the average error into the normal
var newnormal = new double[normal.Length];
foreach (var coordinate in Enumerable.Range(0, normal.Length))
View gist:9899592
stephentu@ben:/x/2/stephentu/dice/src/cpp(master)$ ./simulator opt.values
starting simulation of 10000 trials
mean=271.217, std=41.8306