Skip to content

Instantly share code, notes, and snippets.

@thomdixon
Created September 30, 2016 21:50
Show Gist options
  • Save thomdixon/3a4cc70586e50d35f7b1a65a1cb13fc6 to your computer and use it in GitHub Desktop.
Save thomdixon/3a4cc70586e50d35f7b1a65a1cb13fc6 to your computer and use it in GitHub Desktop.
Simple exponential backoff iterator
class ExponentialBackoff(object):
'''
Simple iterator that calculates exponential backoff durations
'''
def __init__(self, *args, **kwargs):
self.initial_interval = kwargs.pop('initial_interval', 5)
self.max_interval = kwargs.pop('max_interval', 60)
self.randomization_factor = kwargs.pop('randomization_factor', 0.5)
self.multiplier = kwargs.pop('multiplier', 1.5)
self.max_elapsed_time = kwargs.pop('max_elapsed_time', 900)
self.started = time.time()
self.interval = self.initial_interval
def _elapsed(self):
return time.time() - self.started
def _should_stop(self):
return self.max_elapsed_time and self._elapsed() > self.max_elapsed_time
def _next_interval(self):
result = self.interval * self.multiplier
return min(result, self.max_interval) if self.max_interval else result
def _select_from_interval(self):
delta = self.randomization_factor * self.interval
low, high = self.interval - delta, self.interval + delta
return random.uniform(low, high)
def __iter__(self):
return self
def next(self):
if self._should_stop():
raise StopIteration
result = self._select_from_interval()
self.interval = self._next_interval()
return result
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment