Skip to content

Instantly share code, notes, and snippets.

Avatar
👺

Thom Dixon thomdixon

👺
View GitHub Profile
@thomdixon
thomdixon / ssh_certificate.py
Last active Oct 14, 2021
Simple implementation of SSH certificates for Python using Paramiko. Supports serializing from and to Message objects.
View ssh_certificate.py
from collections import OrderedDict
import paramiko
from paramiko.agent import AgentKey
from paramiko.message import Message
CERT_ATTRIBUTE_TO_TYPE = {
'name': 'string',
'nonce': 'string',
@thomdixon
thomdixon / ExponentialBackoff.py
Created Sep 30, 2016
Simple exponential backoff iterator
View ExponentialBackoff.py
class ExponentialBackoff(object):
'''
Simple iterator that calculates exponential backoff durations
'''
def __init__(self, *args, **kwargs):
self.initial_interval = kwargs.pop('initial_interval', 5)
self.max_interval = kwargs.pop('max_interval', 60)
self.randomization_factor = kwargs.pop('randomization_factor', 0.5)
self.multiplier = kwargs.pop('multiplier', 1.5)
self.max_elapsed_time = kwargs.pop('max_elapsed_time', 900)
@thomdixon
thomdixon / PollardRho.py
Last active Mar 27, 2021
Pollard's rho algorithm in Python
View PollardRho.py
#!/usr/bin/env python
from fractions import gcd
def pollard_rho(n, seed=2, f=lambda x: x**2 + 1):
x, y, d = seed, seed, 1
while d == 1:
x = f(x) % n
y = f(f(y)) % n
d = gcd((x - y) % n, n)
@thomdixon
thomdixon / NaiveRSA.py
Created Feb 28, 2013
Naive implementation of the RSA cryptosystem
View NaiveRSA.py
import os
import random
class NaiveRSA(object):
_small_primes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,
101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,
181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,
271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,
373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,
463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,
@thomdixon
thomdixon / NaiveDiffieHellman.py
Last active Dec 14, 2015
Naive (educational) implementation of the Diffie-Hellman(-Merkle) key exchange.
View NaiveDiffieHellman.py
#!/usr/bin/env python
import os
class NaiveDiffieHellman(object):
'''Naive implementation of the Diffie-Hellman key exchange'''
# 3072 bit prime modulus and generator given in RFC3526
# this mod p group has id 14
__P = ('0xFFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1'
'29024E088A67CC74020BBEA63B139B22514A08798E3404DD'