Skip to content

Instantly share code, notes, and snippets.

@thomdixon
Created February 28, 2013 02:19
Show Gist options
  • Save thomdixon/5053651 to your computer and use it in GitHub Desktop.
Save thomdixon/5053651 to your computer and use it in GitHub Desktop.
Naive implementation of the RSA cryptosystem
import os
import random
class NaiveRSA(object):
_small_primes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,
101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,
181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,
271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,
373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,
463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,
577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,
673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,
787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,
887,907,911,919,929,937,941,947,953,967,971,977,983,991,997]
_e = 65537
def _xgcd(self, a, b):
'''Compute the Bezout multipliers x and y s.t. ax + by = gcd(a,b)'''
if b == 0:
return (1, 0)
q, r = divmod(a, b)
s, t = self._xgcd(b, r)
return (t, s-q*t)
def _miller_rabin(self, n, bases=5):
'''Perform the Miller-Rabin primailty test with the given number of bases'''
s, t = n-1, 0
while s & 1 == 0:
s >>= 1
t += 1
def _is_witness(m):
'''Determine if m is a witness to the compositeness of n'''
if pow(m, t, n) == 1:
return False
for i in xrange(t):
if pow(m, (1 << i) * s, n) == n - 1:
return False
return True
for i in xrange(bases):
a = random.randrange(2, n)
if _is_witness(a):
return False
return True
def _is_probable_prime(self, n):
'''Determine if n is probably prime'''
for i in self._small_primes:
if n == i:
return True
if n % i == 0:
return False
return self._miller_rabin(n)
def _get_probable_prime(self, bits):
'''Slightly-less-than-naively generate a probably prime number'''
while True:
p = int(os.urandom(bits/8).encode('hex'), 16)
if p & 1 == 0:
p |= 1
if self._is_probable_prime(p):
return p
def generate_keypair(self, bits=128):
'''Generate an RSA key pair'''
# Note that we don't ensure p != q and that |p - q| is sufficiently large
p, q = self._get_probable_prime(bits), self._get_probable_prime(bits)
n = p*q
phi_n = (p-1) * (q-1)
d = self._xgcd(phi_n, self._e)[1]
if d < 0:
d += phi_n
# yield the (public key, private key)
return ((n, self._e), (n, d))
def encrypt(self, key, m):
'''Encrypt the message m using the provided public key'''
return pow(m, key[1], key[0])
def decrypt(self, key, c):
'''Decrypt the ciphertext c using the provided private key'''
# Notational, rather than useful
return self.encrypt(key, c)
if __name__ == '__main__':
rsa = NaiveRSA()
public, private = rsa.generate_keypair()
print 'public key is:', public
print 'private key is:', private
c = rsa.encrypt(public, 1357)
p = rsa.decrypt(private, c)
print 'Ciphertext is:', c, 'and plaintext is:', p
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment