Created
February 28, 2013 02:19
-
-
Save thomdixon/5053651 to your computer and use it in GitHub Desktop.
Naive implementation of the RSA cryptosystem
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import random | |
class NaiveRSA(object): | |
_small_primes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97, | |
101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179, | |
181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269, | |
271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367, | |
373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461, | |
463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571, | |
577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661, | |
673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773, | |
787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883, | |
887,907,911,919,929,937,941,947,953,967,971,977,983,991,997] | |
_e = 65537 | |
def _xgcd(self, a, b): | |
'''Compute the Bezout multipliers x and y s.t. ax + by = gcd(a,b)''' | |
if b == 0: | |
return (1, 0) | |
q, r = divmod(a, b) | |
s, t = self._xgcd(b, r) | |
return (t, s-q*t) | |
def _miller_rabin(self, n, bases=5): | |
'''Perform the Miller-Rabin primailty test with the given number of bases''' | |
s, t = n-1, 0 | |
while s & 1 == 0: | |
s >>= 1 | |
t += 1 | |
def _is_witness(m): | |
'''Determine if m is a witness to the compositeness of n''' | |
if pow(m, t, n) == 1: | |
return False | |
for i in xrange(t): | |
if pow(m, (1 << i) * s, n) == n - 1: | |
return False | |
return True | |
for i in xrange(bases): | |
a = random.randrange(2, n) | |
if _is_witness(a): | |
return False | |
return True | |
def _is_probable_prime(self, n): | |
'''Determine if n is probably prime''' | |
for i in self._small_primes: | |
if n == i: | |
return True | |
if n % i == 0: | |
return False | |
return self._miller_rabin(n) | |
def _get_probable_prime(self, bits): | |
'''Slightly-less-than-naively generate a probably prime number''' | |
while True: | |
p = int(os.urandom(bits/8).encode('hex'), 16) | |
if p & 1 == 0: | |
p |= 1 | |
if self._is_probable_prime(p): | |
return p | |
def generate_keypair(self, bits=128): | |
'''Generate an RSA key pair''' | |
# Note that we don't ensure p != q and that |p - q| is sufficiently large | |
p, q = self._get_probable_prime(bits), self._get_probable_prime(bits) | |
n = p*q | |
phi_n = (p-1) * (q-1) | |
d = self._xgcd(phi_n, self._e)[1] | |
if d < 0: | |
d += phi_n | |
# yield the (public key, private key) | |
return ((n, self._e), (n, d)) | |
def encrypt(self, key, m): | |
'''Encrypt the message m using the provided public key''' | |
return pow(m, key[1], key[0]) | |
def decrypt(self, key, c): | |
'''Decrypt the ciphertext c using the provided private key''' | |
# Notational, rather than useful | |
return self.encrypt(key, c) | |
if __name__ == '__main__': | |
rsa = NaiveRSA() | |
public, private = rsa.generate_keypair() | |
print 'public key is:', public | |
print 'private key is:', private | |
c = rsa.encrypt(public, 1357) | |
p = rsa.decrypt(private, c) | |
print 'Ciphertext is:', c, 'and plaintext is:', p |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment