Skip to content

Instantly share code, notes, and snippets.

@thomdixon
Last active December 14, 2015 04:18
Show Gist options
  • Save thomdixon/5026986 to your computer and use it in GitHub Desktop.
Save thomdixon/5026986 to your computer and use it in GitHub Desktop.
Naive (educational) implementation of the Diffie-Hellman(-Merkle) key exchange.
#!/usr/bin/env python
import os
class NaiveDiffieHellman(object):
'''Naive implementation of the Diffie-Hellman key exchange'''
# 3072 bit prime modulus and generator given in RFC3526
# this mod p group has id 14
__P = ('0xFFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1'
'29024E088A67CC74020BBEA63B139B22514A08798E3404DD'
'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245'
'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED'
'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D'
'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F'
'83655D23DCA3AD961C62F356208552BB9ED529077096966D'
'670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B'
'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9'
'DE2BCBF6955817183995497CEA956AE515D2261898FA0510'
'15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64'
'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7'
'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B'
'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C'
'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31'
'43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF')
_P = int(__P, 16)
_G = 2
def __init__(self, exp_size=128):
# Let's pretend that urandom is a CSPRNG
self.exp_size = exp_size
self.__A = None
def _A(self):
'''Generate and store a random A for computing _G^A (mod _P)'''
if not self.__A:
self.__A = int(os.urandom(self.exp_size).encode('hex'), 16)
return self.__A
def shared(self):
'''Compute _G^A (mod _P) to share'''
return pow(self._G, self._A(), self._P)
def exchange(self, provided):
'''Given _G^B (mod _P), compute (_G^B)^A (mod _P)'''
return pow(provided, self._A(), self._P)
if __name__ == '__main__':
from hashlib import sha256
import binascii
def int_to_bytes(x):
h = hex(x)[2:].rstrip('L')
return binascii.unhexlify('0' * (32 - len(h)) + h)
alice, bob = NaiveDiffieHellman(), NaiveDiffieHellman()
A = alice.shared()
B = bob.shared()
alice_secret = alice.exchange(B)
bob_secret = bob.exchange(A)
assert alice_secret == bob_secret
print "Alice and Bob's shared secret is:", alice_secret
print 'A symmetric key from this secret is:', sha256(int_to_bytes(alice_secret)).hexdigest()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment