Last active
December 14, 2015 04:18
-
-
Save thomdixon/5026986 to your computer and use it in GitHub Desktop.
Naive (educational) implementation of the Diffie-Hellman(-Merkle) key exchange.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
import os | |
class NaiveDiffieHellman(object): | |
'''Naive implementation of the Diffie-Hellman key exchange''' | |
# 3072 bit prime modulus and generator given in RFC3526 | |
# this mod p group has id 14 | |
__P = ('0xFFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' | |
'29024E088A67CC74020BBEA63B139B22514A08798E3404DD' | |
'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' | |
'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' | |
'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' | |
'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' | |
'83655D23DCA3AD961C62F356208552BB9ED529077096966D' | |
'670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' | |
'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' | |
'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' | |
'15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' | |
'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' | |
'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' | |
'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' | |
'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' | |
'43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF') | |
_P = int(__P, 16) | |
_G = 2 | |
def __init__(self, exp_size=128): | |
# Let's pretend that urandom is a CSPRNG | |
self.exp_size = exp_size | |
self.__A = None | |
def _A(self): | |
'''Generate and store a random A for computing _G^A (mod _P)''' | |
if not self.__A: | |
self.__A = int(os.urandom(self.exp_size).encode('hex'), 16) | |
return self.__A | |
def shared(self): | |
'''Compute _G^A (mod _P) to share''' | |
return pow(self._G, self._A(), self._P) | |
def exchange(self, provided): | |
'''Given _G^B (mod _P), compute (_G^B)^A (mod _P)''' | |
return pow(provided, self._A(), self._P) | |
if __name__ == '__main__': | |
from hashlib import sha256 | |
import binascii | |
def int_to_bytes(x): | |
h = hex(x)[2:].rstrip('L') | |
return binascii.unhexlify('0' * (32 - len(h)) + h) | |
alice, bob = NaiveDiffieHellman(), NaiveDiffieHellman() | |
A = alice.shared() | |
B = bob.shared() | |
alice_secret = alice.exchange(B) | |
bob_secret = bob.exchange(A) | |
assert alice_secret == bob_secret | |
print "Alice and Bob's shared secret is:", alice_secret | |
print 'A symmetric key from this secret is:', sha256(int_to_bytes(alice_secret)).hexdigest() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment