Skip to content

Instantly share code, notes, and snippets.

@timvisee
Last active March 19, 2024 05:38
Star You must be signed in to star a gist
Save timvisee/fcda9bbdff88d45cc9061606b4b923ca to your computer and use it in GitHub Desktop.
Falsehoods programmers believe about time, in a single list

Falsehoods programmers believe about time

This is a compiled list of falsehoods programmers tend to believe about working with time.

Don't re-invent a date time library yourself. If you think you understand everything about time, you're probably doing it wrong.

Falsehoods

  • There are always 24 hours in a day.
  • February is always 28 days long.
  • Any 24-hour period will always begin and end in the same day (or week, or month).
  • A week always begins and ends in the same month.
  • A week (or a month) always begins and ends in the same year.
  • The machine that a program runs on will always be in the GMT time zone.
  • Ok, that’s not true. But at least the time zone in which a program has to run will never change.
  • Well, surely there will never be a change to the time zone in which a program hast to run in production.
  • The system clock will always be set to the correct local time.
  • The system clock will always be set to a time that is not wildly different from the correct local time.
  • If the system clock is incorrect, it will at least always be off by a consistent number of seconds.
  • The server clock and the client clock will always be set to the same time.
  • The server clock and the client clock will always be set to around the same time.
  • Ok, but the time on the server clock and time on the client clock would never be different by a matter of decades.
  • If the server clock and the client clock are not in synch, they will at least always be out of synch by a consistent number of seconds.
  • The server clock and the client clock will use the same time zone.
  • The system clock will never be set to a time that is in the distant past or the far future.
  • Time has no beginning and no end.
  • One minute on the system clock has exactly the same duration as one minute on any other clock
  • Ok, but the duration of one minute on the system clock will be pretty close to the duration of one minute on most other clocks.
  • Fine, but the duration of one minute on the system clock would never be more than an hour.
  • The smallest unit of time is one second.
  • Ok, one millisecond.
  • It will never be necessary to set the system time to any value other than the correct local time.
  • Ok, testing might require setting the system time to a value other than the correct local time but it will never be necessary to do so in production.
  • Time stamps will always be specified in a commonly-understood format like 1339972628 or 133997262837.
  • Time stamps will always be specified in the same format.
  • Time stamps will always have the same level of precision.
  • A time stamp of sufficient precision can safely be considered unique.
  • A timestamp represents the time that an event actually occurred.
  • Human-readable dates can be specified in universally understood formats such as 05/07/11.
  • The offsets between two time zones will remain constant.
  • OK, historical oddities aside, the offsets between two time zones won’t change in the future.
  • Changes in the offsets between time zones will occur with plenty of advance notice.
  • Daylight saving time happens at the same time every year.
  • Daylight saving time happens at the same time in every time zone.
  • Daylight saving time always adjusts by an hour.
  • Months have either 28, 29, 30, or 31 days.
  • The day of the month always advances contiguously from N to either N+1 or 1, with no discontinuities.
  • There is only one calendar system in use at one time.
  • There is a leap year every year divisible by 4.
  • Non leap years will never contain a leap day.
  • It will be easy to calculate the duration of x number of hours and minutes from a particular point in time.
  • The same month has the same number of days in it everywhere!
  • Unix time is completely ignorant about anything except seconds.
  • Unix time is the number of seconds since Jan 1st 1970.
  • The day before Saturday is always Friday.
  • Contiguous timezones are no more than an hour apart. (aka we don’t need to test what happens to the avionics when you fly over the International Date Line)
  • Two timezones that differ will differ by an integer number of half hours.
  • Okay, quarter hours.
  • Okay, seconds, but it will be a consistent difference if we ignore DST.
  • If you create two date objects right beside each other, they’ll represent the same time. (a fantastic Heisenbug generator)
  • You can wait for the clock to reach exactly HH:MM:SS by sampling once a second.
  • If a process runs for n seconds and then terminates, approximately n seconds will have elapsed on the system clock at the time of termination.
  • Weeks start on Monday.
  • Days begin in the morning.
  • Holidays span an integer number of whole days.
  • The weekend consists of Saturday and Sunday.
  • It’s possible to establish a total ordering on timestamps that is useful outside your system.
  • The local time offset (from UTC) will not change during office hours.
  • Thread.sleep(1000) sleeps for 1000 milliseconds.
  • Thread.sleep(1000) sleeps for >= 1000 milliseconds.
  • There are 60 seconds in every minute.
  • Timestamps always advance monotonically.
  • GMT and UTC are the same timezone.
  • Britain uses GMT.
  • Time always goes forwards.
  • The difference between the current time and one week from the current time is always 7 * 86400 seconds.
  • The difference between two timestamps is an accurate measure of the time that elapsed between them.
  • 24:12:34 is a invalid time.
  • Every integer is a theoretical possible year.
  • If you display a datetime, the displayed time has the same second part as the stored time,
  • Or the same year,
  • But at least the numerical difference between the displayed and stored year will be less than 2.
  • If you have a date in a correct YYYY-MM-DD format, the year consists of four characters.
  • If you merge two dates, by taking the month from the first and the day/year from the second, you get a valid date.
  • But it will work, if both years are leap years
  • If you take a w3c published algorithm for adding durations to dates, it will work in all cases.
  • The standard library supports negative years and years above 10000.
  • Time zones always differ by a whole hour.
  • If you convert a timestamp with millisecond precision to a date time with second precision, you can safely ignore the millisecond fractions.
  • But you can ignore the millisecond fraction, if it is less than 0.5.
  • Two-digit years should be somewhere in the range 1900-2099.
  • If you parse a date time, you can read the numbers character for character, without needing to backtrack.
  • But if you print a date time, you can write the numbers character for character, without needing to backtrack.
  • You will never have to parse a format like ---12Z or P12Y34M56DT78H90M12.345S.
  • There are only 24 time zones.
  • Time zones are always whole hours away from UTC.
  • Daylight Saving Time (DST) starts/ends on the same date everywhere.
  • DST is always an advancement by 1 hour.
  • Reading the client’s clock and comparing to UTC is a good way to determine their timezone.
  • The software stack will/won’t try to automatically adjust for timezone/DST.
  • My software is only used internally/locally, so I don’t have to worry about timezones.
  • My software stack will handle it without me needing to do anything special.
  • I can easily maintain a timezone list myself.
  • All measurements of time on a given clock will occur within the same frame of reference.
  • The fact that a date-based function works now means it will work on any date.
  • Years have 365 or 366 days.
  • Each calendar date is followed by the next in sequence, without skipping.
  • A given date and/or time unambiguously identifies a unique moment.
  • Leap years occur every 4 years.
  • You can determine the time zone from the state/province.
  • You can determine the time zone from the city/town.
  • Time passes at the same speed on top of a mountain and at the bottom of a valley.
  • One hour is as long as the next in all time systems.
  • You can calculate when leap seconds will be added.
  • The precision of the data type returned by a getCurrentTime() function is the same as the precision of that function.
  • Two subsequent calls to a getCurrentTime() function will return distinct results.
  • The second of two subsequent calls to a getCurrentTime() function will return a larger result.
  • The software will never run on a space ship that is orbiting a black hole.
  • Devices will be set to the local timezone
  • Users prefer to use the local timezone

Sources

This list is based on these articles. More detailed information about each statement can be found in one of two articles.

@ZachLevente
Copy link

Can anybody help me out, and tell me what these formats are? A quick search didn't bring up anything for me.

You will never have to parse a format like ---12Z or P12Y34M56DT78H90M12.345S

@stwalkerster
Copy link

@thiagomgd
Copy link

it would be nice to include examples in a bunch of these

@mgsternberg
Copy link

  • A date range such as a week, month, or year lasts from midnight of its first day to the same time of the last day of that range.

An elementary off-by-one error, plus misconceptions of higher order.

Seen in a database report covering a calendar month. While events were shown (correctly) that occurred during the last day of the month, the report header used a date format which claimed wall clock times of “00:00”, seemingly putting the end time at the beginning of the last day.

@mgsternberg
Copy link

Okay @rolfbjarne I need examples, those sound delicious

Besides @rolfbjarne‘s indeed delicious examples, see countries^H^H^H^H jurisdictions in the southern hemisphere where a (Gregorian) new year begins while DST is on.

@BrianBu01
Copy link

Something I found out recently which I found interesting that maybe a line item for this list.

P1040462

In Japan days can overlap, meaning the end of one day doesn't have to be the beginning of the next. It is called the 30 hour clock. https://en.wikipedia.org/wiki/Date_and_time_notation_in_Japan

25:00hr is 1:00am
30:00hr is 6:00am

@cben
Copy link

cben commented Feb 9, 2023

Brilliant! That solves some situations where the day referred to is ambiguous to humans.

I think I've seen it in some other countries for e.g. night movie times, but rarely. But I've never considered accepting them in a program 🤔

Airlines could benefit from this, they tend to invent "+1" etc. indications near times that are in the next day...
(But should match user's cultural expectations. Don't get me started on how confusing "12:30am" is to 24h brains!)


ISO8601 has a lot of other weird notations... Most libraries that claim to implement it won't parse e.g. 2023-W06-4 (week number+day) or T1430,5 (who needs seconds when you can have decimal fractions on minutes or hours!?). Oh, it also allows unicode hyphen characters in some places.
So "particular library/software supports ISO8601" is itself nearly a falsehood programmers believe.
(Partially because it's a paid standard, so few actually read it?)

Anybody defining a protocol/API: please consider RFC3339 instead. Read the RFC for rationale, see also comparison.

@bknowles
Copy link

bknowles commented Mar 4, 2023

Note that Unix time stamps are specified only down to the second, and not any portion thereof. You can create other types of time stamps that do have milliseconds or nanoseconds or whatever, but they're not Unix time stamps.

@mephitrpg
Copy link

mephitrpg commented Mar 13, 2023

why is this wrong? "Non leap years will never contain a leap day"

@rememberlenny
Copy link

rememberlenny commented Mar 18, 2023

GPT-4 turning these into 10 concise principles.

  1. Time is relative: Understand that time varies across time zones, calendars, and even physical locations (e.g., due to gravity). Ensure that software can accommodate these variations.

  2. Time is complex: Be aware of the intricacies of time, such as leap years, daylight saving time, and varying month lengths. Use existing libraries and algorithms to handle these complexities instead of attempting to create your own.

  3. Time is dynamic: Recognize that time zones, offsets, and calendar systems can change. Stay updated with the latest information and adjust software accordingly.

  4. Time is precise: Respect the precision of time, from milliseconds to seconds, minutes, hours, days, weeks, and years. Ensure that software can handle and display this level of detail accurately.

  5. Time is global: Develop software with a worldwide user base in mind, considering different languages, calendar systems, and cultural practices related to time.

  6. Time is synchronized: Strive to synchronize server and client clocks, acknowledging that discrepancies may still occur. Implement strategies to handle such discrepancies gracefully.

  7. Time is unique: Use high-precision timestamps to uniquely identify events, understanding that multiple events can occur within a short time span.

  8. Time is formatted: Employ standardized and commonly understood formats to represent time, such as ISO 8601 or Unix timestamps, and be prepared to handle different formats when parsing timestamps.

  9. Time is subjective: Acknowledge that users may have different preferences for displaying time, such as local time zones or 12-hour vs. 24-hour formats. Offer options for customization and localization.

  10. Time is interconnected: Recognize that time is linked to other data, such as dates, durations, and events. Ensure that calculations and operations involving time are accurate and consider the impact of changes in one aspect of time on related data.

@karenetheridge
Copy link

Please don't pollute Github with AI-generated content.

@Quicksilver151
Copy link

Principle 11: No time exist for complaints about AI

@edemaine
Copy link

I just ran into a fun one:

The server clock and the server clock will always be set to (roughly) the same time.

I had multiple servers, each timestamping events that got stored in a shared database. This led to significant confusion until I fixed NTP on the servers...

@jordan8037310
Copy link

Obligatory: "Time is a flat circle"

https://www.youtube.com/watch?v=0mhZBLUyybo

@alexiade
Copy link

If anyone ever needs to do anything for Target2 Securities - that one breaks half the list and then some. The calendar/clock time/event any given business system operates in may or may not have any deterministic connection to world clock/calendar. Assuption, that the system even has at a given time a valid date-time is also incorrect. The days start when the system says they start, IF they start at all. One day can start under normal operation up to FOUR days ahead. A day can end and next one may not start for 3 more days, days are skipped based on a calendar agreed at start of year and the settlement timestamp has nothing to do with when it actually happened. Oh, and within one up to 4 days long day, there is no deterministic way of ordering what happened first...

@prembhaskal
Copy link

one more falsehood. NTP will solve timing issues on my distributed systems.

@willhansen
Copy link

These are all interesting points, and it really bugs me that each point doesn't have an associated link I can follow to learn more about it. Cite your sources dammit!

@mgsternberg
Copy link

… it really bugs me that each point doesn't have an associated link I can follow to learn more about it. Cite your sources dammit!

Good point, but you see, the purpose of falsehood lists has never been to learn or to improve the state of affairs:
https://kevin.deldycke.com/2016/12/falsehoods-programmers-believe-about-falsehoods-lists/

@olafmat
Copy link

olafmat commented Dec 15, 2023

Other false beliefs:

  • It's the same year in every country (what about New Year?)
  • At least the year in two countries can only differ by one (it's the year 2566 now in Thailand)
  • every country uses the Gregorian calendar
  • second is the same everywhere (there are differences because of the General Relativity and time zones that account for these differences, for example, Barycentric Coordinate Time and Geocentric Coordinate Time)

@LeoLapworthKT
Copy link

https://www.youtube.com/watch?v=IlRTcIK1aGo is a great talk on this subject as well

@the-man-machine
Copy link

And, of course, there's now a relevant XKCD on the subject.

@whnr
Copy link

whnr commented Jan 25, 2024

Add to the list:

  • Midnight will always have an AM at the end of a 12h time string.
  • Ok, but at least there consistently is a time hh:mm:ss at midnight and it wont just be a date randomly.

Screenshot from 2024-01-25 16-46-56

Thank you windows pocket on a Siemens HMI.

@pitrh
Copy link

pitrh commented Feb 29, 2024

Okay @rolfbjarne I need examples, those sound delicious

For the daylight saving time starting and ending in different years case, think Australia (https://en.wikipedia.org/wiki/Daylight_saving_time_in_Australia)

@muriloazevedo
Copy link

The day before Saturday is always Friday.

Anyone can explain this?

@gustavjorlov
Copy link

gustavjorlov commented Mar 1, 2024

  • The Y38K problem doesn't exist

@pierreinglebert
Copy link

The leap year is not only every 4 years, if the year is divisible by 100, the leap year happens every 400 years. 2100 for example, wont be a leap year.
https://en.wikipedia.org/wiki/Century_leap_year

@Mottie
Copy link

Mottie commented Mar 11, 2024

This is my new favorite picture to share with everyone - UTC +13! 🤯

timezones in Antarctica

time zone map of Antarctica with UTC +13 time zone

@MetroidIsPrettyCool
Copy link

  • No software will ever have to handle non-Earth days (e.g. Martian Sols)
  • Well, no software will ever have to handle non-Earth days and Earth days together. (e.g. the Mars Relay Network)
  • Speed-of-light delay is always negligible (e.g. when synchronizing to GPS atomic clocks)
  • Atomic clocks keep perfect time (e.g. even NIST-F2 has a relative uncertainty value)
  • Durations expressed as integers will always be measured in seconds (e.g. nanoseconds)
  • Well, some SI multiple of a second (e.g. ncurses.h's halfdelay(int) uses tenths of a second)
  • Well, some power of ten multiple of a second (having trouble finding a good example, but I'm certain I've seen half-seconds used somewhere)
  • Durations expressed as negative integers will always have a consistent meaning (e.g. ncurses.h's timeout(int) uses negative numbers to indicate a blocking read, but it also commonly means a second event occurred before a first)
  • No software will ever deliberately mishandle dates (e.g. Lotus 1-2-3 bug)
  • No software will ever deliberately mishandle timers (e.g. Spectre mitigation in web browsers)
  • Nobody will ever want to compare dates more than a hundred years apart (I mean, duh)
  • We know the length of every historical year (e.g. the pre-Julian-reform Roman calendar)
  • Displays will refresh at integer frequencies (e.g. NTSC video is 29.97 frames per second)
  • Displays will refresh at consistent frequencies (It's a clock, it's going to slip)
  • Two signals with the same clock rate will be synchronized (e.g. analog video compositing)
  • Two synchronized signals with the same clock rate will stay synchronized (e.g. turn signals)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment