Skip to content

Instantly share code, notes, and snippets.

use rand::Rng;
use std::cmp::Ordering;
use std::io;
fn main() {
println!("Set your secret (1-100):");
let mut secret = String::new();
.read_line(&mut secret)
.expect("Failed to read line");
vbauerster /
Last active March 2, 2019 10:59
go sync package benchmarks: mbp 2013 vs mbp 2017

Benchmarks done with go 1.12 version.

mbp 2017 results

  • CPU: Intel Core i7-7820HQ @ 2.90GHz
  • RAM: 16 GB 2133 MHz LPDDR3
goos: darwin
goarch: amd64
pkg: sync
BenchmarkCond1-8                   	10000000	       236 ns/op	       0 B/op	       0 allocs/op
"vim.leader": "<space>",
"vim.easymotion": true,
"vim.neovimPath": "/usr/local/bin/nvim",
"vim.enableNeovim": true,
"vim.insertModeKeyBindings": [
"before": [",", "."],
"after": ["<Esc>"]
let mapleader = " "
"set showtabindices
"set smoothscroll
map g{ previousTab
map g} nextTab
" Code blocks (see below for more info)
getIP() -> {{
httpRequest({url: '', json: true},
function(res) { Status.setMessage('IP: ' + res.ip); });
" exrc for wasavi
set tabstop=4
set number
set jkdenotative
set cursorline
set cursorcolumn
set theme=solarized
" map! is insert mode
map! ,. <esc>
vbauerster / .vimrc
Created September 11, 2017 10:36 — forked from diyan/.vimrc
Alexey Diyan's vim configuration file
" This must be first, because it changes other options as a side effect.
set nocompatible
" On Windows use '.vim' instead of 'vimfiles' to make sync easier
let s:ms_win = (has('win16') || has('win32') || has('win64'))
if s:ms_win
set runtimepath=$HOME/.vim,$VIM/vimfiles,$VIMRUNTIME,$VIM/vimfiles/after,$HOME/.vim/after
set shell=/bin/sh

Keybase proof

I hereby claim:

  • I am vbauerster on github.
  • I am vbauerster ( on keybase.
  • I have a public key ASB3b2WsmEzM0zEf5anFdzxVWDr9H54XJK0hOntQZP7v_go

To claim this, I am signing this object:

package main
import (
func main() {
responses := make(chan string, 3)
Exercise: Loops and Functions
As a simple way to play with functions and loops, implement the square root
function using Newton's method.
In this case, Newton's method is to approximate Sqrt(x) by picking a starting
point z and then repeating: z - (z*z-x)/(2*z)
Original formula:
package main
import (
func main() {
inch := make(chan int)
outch := make(chan int)