Skip to content

Instantly share code, notes, and snippets.

@victoriastuart
Created April 28, 2018 00:14
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save victoriastuart/d1b1959bd31e4de5ed951ff4fe3c3184 to your computer and use it in GitHub Desktop.
Save victoriastuart/d1b1959bd31e4de5ed951ff4fe3c3184 to your computer and use it in GitHub Desktop.
HMDB XML files for SO#50054073
<?xml version="1.0" encoding="UTF-8"?>
<xml_split:root xmlns:xml_split="http://xmltwig.com/xml_split">
<metabolite>
<version>4.0</version>
<creation_date>2005-11-16 15:48:42 UTC</creation_date>
<update_date>2018-03-28 16:58:25 UTC</update_date>
<accession>HMDB0000001</accession> <status>quantified</status>
<secondary_accessions>
<accession>HMDB00001</accession>
<accession>HMDB0004935</accession>
<accession>HMDB0006703</accession>
<accession>HMDB0006704</accession>
<accession>HMDB04935</accession>
<accession>HMDB06703</accession>
<accession>HMDB06704</accession>
</secondary_accessions>
<name>1-Methylhistidine</name>
<description>One-methylhistidine (1-MHis) is derived mainly from the anserine of dietary flesh sources, especially poultry. The enzyme, carnosinase, splits anserine into b-alanine and 1-MHis. High levels of 1-MHis tend to inhibit the enzyme carnosinase and increase anserine levels. Conversely, genetic variants with deficient carnosinase activity in plasma show increased 1-MHis excretions when they consume a high meat diet. Reduced serum carnosinase activity is also found in patients with Parkinson's disease and multiple sclerosis and patients following a cerebrovascular accident. Vitamin E deficiency can lead to 1-methylhistidinuria from increased oxidative effects in skeletal muscle. 1-Methylhistidine is a biomarker for the consumption of meat, especially red meat.</description>
<synonyms>
<synonym>(2S)-2-amino-3-(1-Methyl-1H-imidazol-4-yl)propanoic acid</synonym>
<synonym>1-Methylhistidine</synonym>
<synonym>Pi-methylhistidine</synonym>
<synonym>(2S)-2-amino-3-(1-Methyl-1H-imidazol-4-yl)propanoate</synonym>
<synonym>1 Methylhistidine</synonym>
<synonym>1-Methyl histidine</synonym>
<synonym>1-Methyl-histidine</synonym>
<synonym>1-Methyl-L-histidine</synonym>
<synonym>1-MHis</synonym>
<synonym>1-N-Methyl-L-histidine</synonym>
<synonym>L-1-Methylhistidine</synonym>
<synonym>N1-Methyl-L-histidine</synonym>
<synonym>1-Methylhistidine dihydrochloride</synonym>
</synonyms>
<chemical_formula>C7H11N3O2</chemical_formula>
<average_molecular_weight>169.1811</average_molecular_weight>
<monisotopic_molecular_weight>169.085126611</monisotopic_molecular_weight>
<iupac_name>(2S)-2-amino-3-(1-methyl-1H-imidazol-4-yl)propanoic acid</iupac_name>
<traditional_iupac>1 methylhistidine</traditional_iupac>
<cas_registry_number>332-80-9</cas_registry_number>
<smiles>CN1C=NC(C[C@H](N)C(O)=O)=C1</smiles>
<inchi>InChI=1S/C7H11N3O2/c1-10-3-5(9-4-10)2-6(8)7(11)12/h3-4,6H,2,8H2,1H3,(H,11,12)/t6-/m0/s1</inchi>
<inchikey>BRMWTNUJHUMWMS-LURJTMIESA-N</inchikey>
<taxonomy>
<description>This compound belongs to the class of organic compounds known as histidine and derivatives. These are compounds containing cysteine or a derivative thereof resulting from reaction of cysteine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom.</description>
<direct_parent>Histidine and derivatives</direct_parent>
<kingdom>Organic compounds</kingdom>
<super_class>Organic acids and derivatives</super_class>
<class>Carboxylic acids and derivatives</class>
<sub_class>Amino acids, peptides, and analogues</sub_class>
<molecular_framework>Aromatic heteromonocyclic compounds</molecular_framework>
<alternative_parents>
<alternative_parent>Amino acids</alternative_parent>
<alternative_parent>Aralkylamines</alternative_parent>
<alternative_parent>Azacyclic compounds</alternative_parent>
<alternative_parent>Carbonyl compounds</alternative_parent>
<alternative_parent>Carboxylic acids</alternative_parent>
<alternative_parent>Heteroaromatic compounds</alternative_parent>
<alternative_parent>Hydrocarbon derivatives</alternative_parent>
<alternative_parent>Imidazolyl carboxylic acids and derivatives</alternative_parent>
<alternative_parent>L-alpha-amino acids</alternative_parent>
<alternative_parent>Monoalkylamines</alternative_parent>
<alternative_parent>Monocarboxylic acids and derivatives</alternative_parent>
<alternative_parent>N-substituted imidazoles</alternative_parent>
<alternative_parent>Organic oxides</alternative_parent>
<alternative_parent>Organopnictogen compounds</alternative_parent>
</alternative_parents>
<substituents>
<substituent>Alpha-amino acid</substituent>
<substituent>Amine</substituent>
<substituent>Amino acid</substituent>
<substituent>Aralkylamine</substituent>
<substituent>Aromatic heteromonocyclic compound</substituent>
<substituent>Azacycle</substituent>
<substituent>Azole</substituent>
<substituent>Carbonyl group</substituent>
<substituent>Carboxylic acid</substituent>
<substituent>Heteroaromatic compound</substituent>
<substituent>Histidine or derivatives</substituent>
<substituent>Hydrocarbon derivative</substituent>
<substituent>Imidazole</substituent>
<substituent>Imidazolyl carboxylic acid derivative</substituent>
<substituent>L-alpha-amino acid</substituent>
<substituent>Monocarboxylic acid or derivatives</substituent>
<substituent>N-substituted imidazole</substituent>
<substituent>Organic nitrogen compound</substituent>
<substituent>Organic oxide</substituent>
<substituent>Organic oxygen compound</substituent>
<substituent>Organoheterocyclic compound</substituent>
<substituent>Organonitrogen compound</substituent>
<substituent>Organooxygen compound</substituent>
<substituent>Organopnictogen compound</substituent>
<substituent>Primary aliphatic amine</substituent>
<substituent>Primary amine</substituent>
</substituents>
<external_descriptors>
<external_descriptor>L-histidine derivative</external_descriptor>
<external_descriptor>non-proteinogenic L-alpha-amino acid</external_descriptor>
</external_descriptors>
</taxonomy>
<ontology>
<root>
<term>Physiological effect</term>
<definition>The effect on an organism physiology, resulting from its exposure to a chemical.</definition>
<parent_id/>
<level>1</level>
<type>parent</type>
<descendants>
<descendant>
<term>Health effect</term>
<definition>A health condition or observation associated with a stimuli or with a biological activity of a chemical.</definition>
<parent_id>7693</parent_id>
<level>2</level>
<type>parent</type>
<descendants>
<descendant>
<term>Health condition</term>
<definition>A health effect that consists on short or long-term disease, condition, disorder, syndrome or constant abnormality.</definition>
<parent_id>7694</parent_id>
<level>3</level>
<type>parent</type>
<descendants>
<descendant>
<term>Kidney disease</term>
<definition>A urinary system disease that is located in the kidney. (do).</definition>
<parent_id>7695</parent_id>
<level>4</level>
<type>child</type>
</descendant>
<descendant>
<term>Diabetes mellitus type 2</term>
<definition/>
<parent_id>7695</parent_id>
<level>4</level>
<type>child</type>
</descendant>
<descendant>
<term>Metabolism and nutrition disorders</term>
<definition>A group of disorders, inherited or not, that result in a metabolic malfunction.</definition>
<parent_id>7695</parent_id>
<level>4</level>
<type>parent</type>
<descendants>
<descendant>
<term>Obesity</term>
<definition>A disorder characterized by having a high amount of body fat. (nci ctcae).</definition>
<parent_id>7708</parent_id>
<level>5</level>
<type>child</type>
</descendant>
</descendants>
</descendant>
</descendants>
</descendant>
</descendants>
</descendant>
</descendants>
</root>
<root>
<term>Disposition</term>
<definition>A concept that describes the origin of a chemical, its location within an organism, or its route of exposure.</definition>
<parent_id/>
<level>1</level>
<type>parent</type>
<descendants>
<descendant>
<term>Source</term>
<definition>Natural or synthetic origin of a chemical.</definition>
<parent_id>7724</parent_id>
<level>2</level>
<type>parent</type>
<descendants>
<descendant>
<term>Endogenous</term>
<definition/>
<parent_id>7735</parent_id>
<level>3</level>
<type>child</type>
</descendant>
</descendants>
</descendant>
<descendant>
<term>Biological location</term>
<definition>The physiological origin within an organism, including anatomical compnents, biofluids and excreta.</definition>
<parent_id>7724</parent_id>
<level>2</level>
<type>parent</type>
<descendants>
<descendant>
<term>Tissue and substructures</term>
<definition>An anatomical organizational level including multiple cells yet not comprising a complete organ .</definition>
<parent_id>7725</parent_id>
<level>3</level>
<type>parent</type>
<descendants>
<descendant>
<term>Muscle</term>
<definition>A fibrous soft tissue with the ability to contract to produce force and motion. (nci).</definition>
<parent_id>7729</parent_id>
<level>4</level>
<type>child</type>
</descendant>
<descendant>
<term>Skeletal muscle</term>
<definition>Striated muscles that are under voluntary control of the organism. they are connected at either or both ends to a bone and are utilized for locomotion and other movements. (nci).</definition>
<parent_id>7729</parent_id>
<level>4</level>
<type>child</type>
</descendant>
</descendants>
</descendant>
<descendant>
<term>Biofluid and excreta</term>
<definition>A liquid, semi-solid or solid material originating in the body.</definition>
<parent_id>7725</parent_id>
<level>3</level>
<type>parent</type>
<descendants>
<descendant>
<term>Saliva</term>
<definition>The watery fluid in the mouth made by the salivary glands. saliva moistens food to help digestion and it helps protect the mouth against infections. (nci).</definition>
<parent_id>7731</parent_id>
<level>4</level>
<type>child</type>
</descendant>
<descendant>
<term>Feces</term>
<definition>The material discharged from the bowel during defecation. It consists of undigested food, intestinal mucus, epithelial cells, and bacteria.</definition>
<parent_id>7731</parent_id>
<level>4</level>
<type>child</type>
</descendant>
<descendant>
<term>Urine</term>
<definition>Excretion in liquid state processed by the kidney.</definition>
<parent_id>7731</parent_id>
<level>4</level>
<type>child</type>
</descendant>
<descendant>
<term>Blood</term>
<definition>A liquid tissue with the primary function of transporting oxygen and carbon dioxide (nci). it supplies the tissues with nutrients, removes waste products, and contains various components of the immune system defending the body against infection.</definition>
<parent_id>7731</parent_id>
<level>4</level>
<type>child</type>
</descendant>
<descendant>
<term>Cerebrospinal fluid</term>
<definition>The fluid that is contained within the brain ventricles, the subarachnoid space and the central canal of the spinal cord. (nci).</definition>
<parent_id>7731</parent_id>
<level>4</level>
<type>child</type>
</descendant>
</descendants>
</descendant>
<descendant>
<term>Subcellular</term>
<definition>An anatomical organizational level including a component within a biological cell .</definition>
<parent_id>7725</parent_id>
<level>3</level>
<type>parent</type>
<descendants>
<descendant>
<term>Cytoplasm</term>
<definition>The portion of the cell contained within the plasma membrane but excluding the nucleus.</definition>
<parent_id>7730</parent_id>
<level>4</level>
<type>child</type>
</descendant>
</descendants>
</descendant>
</descendants>
</descendant>
</descendants>
</root>
<root>
<term>Process</term>
<definition>Biological or chemical events, or a series thereof, leading to a known function or end-product.</definition>
<parent_id/>
<level>1</level>
<type>parent</type>
<descendants>
<descendant>
<term>Naturally occurring process</term>
<definition>Naturally-occurring molecular events or a series thereof, leading to a known function or end-product.</definition>
<parent_id>7659</parent_id>
<level>2</level>
<type>parent</type>
<descendants>
<descendant>
<term>Biological process</term>
<definition>Biological or chemical events or a series thereof, leading to a known function or end-product within an organism.</definition>
<parent_id>7660</parent_id>
<level>3</level>
<type>parent</type>
<descendants>
<descendant>
<term>Biochemical pathway</term>
<definition>A linked series of chemical reactions that occur in a defined order within or between organism cells, and lead to a known function or end product.</definition>
<parent_id>7661</parent_id>
<level>4</level>
<type>parent</type>
<descendants>
<descendant>
<term>Histidine Metabolism</term>
<definition> after reaching several years of age, humans begin to synthesize it (most likely in the intestinal micrflora) and it thus becomes a non-essential amino acid. humans can obtain histidine through the breakdown of carnosine (a dipeptide containing histidine and beta-alanine) via the action of carnosine dipeptidase.</definition>
<parent_id>7662</parent_id>
<level>5</level>
<type>child</type>
</descendant>
</descendants>
</descendant>
</descendants>
</descendant>
</descendants>
</descendant>
</descendants>
</root>
<root>
<term>Role</term>
<definition>The purpose or function assumed by a chemical, either naturally or as intended by humans .</definition>
<parent_id/>
<level>1</level>
<type>parent</type>
<descendants>
<descendant>
<term>Industrial application</term>
<definition>The assumed function of a chemical utilized by human.</definition>
<parent_id>7671</parent_id>
<level>2</level>
<type>parent</type>
<descendants>
<descendant>
<term>Pharmaceutical industry</term>
<definition>A pharmacologic activity for which a chemical substance is utilized owing to its biological role.</definition>
<parent_id>7678</parent_id>
<level>3</level>
<type>parent</type>
<descendants>
<descendant>
<term>Pharmaceutical</term>
<definition/>
<parent_id>7679</parent_id>
<level>4</level>
<type>child</type>
</descendant>
</descendants>
</descendant>
</descendants>
</descendant>
</descendants>
</root>
</ontology>
<state>Solid</state>
<experimental_properties>
<property>
<kind>melting_point</kind>
<value>249</value>
<source>http://download.cappchem.com/data/Properties-of-Amino-Acids.pdf</source>
</property>
</experimental_properties>
<predicted_properties>
<property>
<kind>solubility</kind>
<value>6.93 g/L</value>
<source>ALOGPS</source>
</property>
<property>
<kind>logp</kind>
<value>-3.1</value>
<source>ChemAxon</source>
</property>
<property>
<kind>pka_strongest_acidic</kind>
<value>1.96</value>
<source>ChemAxon</source>
</property>
<property>
<kind>pka_strongest_basic</kind>
<value>9.25</value>
<source>ChemAxon</source>
</property>
<property>
<kind>iupac</kind>
<value>(2S)-2-amino-3-(1-methyl-1H-imidazol-4-yl)propanoic acid</value>
<source>ChemAxon</source>
</property>
<property>
<kind>average_mass</kind>
<value>169.1811</value>
<source>ChemAxon</source>
</property>
<property>
<kind>mono_mass</kind>
<value>169.085126611</value>
<source>ChemAxon</source>
</property>
<property>
<kind>smiles</kind>
<value>CN1C=NC(C[C@H](N)C(O)=O)=C1</value>
<source>ChemAxon</source>
</property>
<property>
<kind>formula</kind>
<value>C7H11N3O2</value>
<source>ChemAxon</source>
</property>
<property>
<kind>inchi</kind>
<value>InChI=1S/C7H11N3O2/c1-10-3-5(9-4-10)2-6(8)7(11)12/h3-4,6H,2,8H2,1H3,(H,11,12)/t6-/m0/s1</value>
<source>ChemAxon</source>
</property>
<property>
<kind>inchikey</kind>
<value>BRMWTNUJHUMWMS-LURJTMIESA-N</value>
<source>ChemAxon</source>
</property>
<property>
<kind>polar_surface_area</kind>
<value>81.14</value>
<source>ChemAxon</source>
</property>
<property>
<kind>refractivity</kind>
<value>42.39</value>
<source>ChemAxon</source>
</property>
<property>
<kind>polarizability</kind>
<value>17.11</value>
<source>ChemAxon</source>
</property>
<property>
<kind>rotatable_bond_count</kind>
<value>3</value>
<source>ChemAxon</source>
</property>
<property>
<kind>acceptor_count</kind>
<value>4</value>
<source>ChemAxon</source>
</property>
<property>
<kind>donor_count</kind>
<value>2</value>
<source>ChemAxon</source>
</property>
<property>
<kind>physiological_charge</kind>
<value>0</value>
<source>ChemAxon</source>
</property>
<property>
<kind>formal_charge</kind>
<value>0</value>
<source>ChemAxon</source>
</property>
<property>
<kind>number_of_rings</kind>
<value>1</value>
<source>ChemAxon</source>
</property>
<property>
<kind>bioavailability</kind>
<value>1</value>
<source>ChemAxon</source>
</property>
<property>
<kind>rule_of_five</kind>
<value>Yes</value>
<source>ChemAxon</source>
</property>
<property>
<kind>ghose_filter</kind>
<value>Yes</value>
<source>ChemAxon</source>
</property>
<property>
<kind>veber_rule</kind>
<value>Yes</value>
<source>ChemAxon</source>
</property>
<property>
<kind>mddr_like_rule</kind>
<value>Yes</value>
<source>ChemAxon</source>
</property>
</predicted_properties>
<spectra>
<spectrum>
<type>Specdb::CMs</type>
<spectrum_id>1469</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::CMs</type>
<spectrum_id>1755</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::CMs</type>
<spectrum_id>7663</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::CMs</type>
<spectrum_id>30940</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::CMs</type>
<spectrum_id>30941</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::CMs</type>
<spectrum_id>37237</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::NmrOneD</type>
<spectrum_id>1022</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::MsMs</type>
<spectrum_id>1</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::MsMs</type>
<spectrum_id>2</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::MsMs</type>
<spectrum_id>3</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::MsMs</type>
<spectrum_id>255159</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::MsMs</type>
<spectrum_id>255160</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::MsMs</type>
<spectrum_id>255161</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::MsMs</type>
<spectrum_id>275100</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::MsMs</type>
<spectrum_id>275101</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::MsMs</type>
<spectrum_id>275102</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::NmrTwoD</type>
<spectrum_id>915</spectrum_id>
</spectrum>
</spectra>
<cellular_locations>
<cellular>Cytoplasm</cellular>
</cellular_locations>
<biospecimen_locations>
<biospecimen>Blood</biospecimen>
<biospecimen>Cerebrospinal Fluid (CSF)</biospecimen>
<biospecimen>Feces</biospecimen>
<biospecimen>Saliva</biospecimen>
<biospecimen>Urine</biospecimen>
</biospecimen_locations>
<tissue_locations>
<tissue>Muscle</tissue>
<tissue>Skeletal Muscle</tissue>
</tissue_locations>
<pathways>
<pathway>
<name>Histidine Metabolism</name>
<smpdb_id>SMP00044</smpdb_id>
<kegg_map_id>map00340</kegg_map_id>
</pathway>
<pathway>
<name>Histidinemia</name>
<smpdb_id>SMP00191</smpdb_id>
<kegg_map_id/>
</pathway>
</pathways>
<normal_concentrations>
<concentration>
<biospecimen>Blood</biospecimen>
<concentration_value>7.7 +/- 1.9</concentration_value>
<concentration_units>uM</concentration_units>
<subject_age>Adult (&gt;18 years old)</subject_age>
<subject_sex>Both</subject_sex>
<subject_condition>Normal</subject_condition>
<references>
<reference>
<reference_text>Dohm GL, Williams RT, Kasperek GJ, van Rij AM: Increased excretion of urea and N tau -methylhistidine by rats and humans after a bout of exercise. J Appl Physiol Respir Environ Exerc Physiol. 1982 Jan;52(1):27-33.</reference_text>
<pubmed_id>7061274</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Blood</biospecimen>
<concentration_value>14.4 +/- 2.3</concentration_value>
<concentration_units>uM</concentration_units>
<subject_age>Adult (&gt;18 years old)</subject_age>
<subject_sex>Both</subject_sex>
<subject_condition>Normal</subject_condition>
<references>
<reference>
<reference_text>Dohm GL, Williams RT, Kasperek GJ, van Rij AM: Increased excretion of urea and N tau -methylhistidine by rats and humans after a bout of exercise. J Appl Physiol Respir Environ Exerc Physiol. 1982 Jan;52(1):27-33.</reference_text>
<pubmed_id>7061274</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Blood</biospecimen>
<concentration_value>19.6 +/- 2.6</concentration_value>
<concentration_units>uM</concentration_units>
<subject_age>Adult (&gt;18 years old)</subject_age>
<subject_sex>Both</subject_sex>
<subject_condition>Normal</subject_condition>
<references>
<reference>
<reference_text>Dohm GL, Williams RT, Kasperek GJ, van Rij AM: Increased excretion of urea and N tau -methylhistidine by rats and humans after a bout of exercise. J Appl Physiol Respir Environ Exerc Physiol. 1982 Jan;52(1):27-33.</reference_text>
<pubmed_id>7061274</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Blood</biospecimen>
<concentration_value>12.7 +/- 2.9</concentration_value>
<concentration_units>uM</concentration_units>
<subject_age>Adult (&gt;18 years old)</subject_age>
<subject_sex>Both</subject_sex>
<subject_condition>Normal</subject_condition>
<references>
<reference>
<reference_text>Dohm GL, Williams RT, Kasperek GJ, van Rij AM: Increased excretion of urea and N tau -methylhistidine by rats and humans after a bout of exercise. J Appl Physiol Respir Environ Exerc Physiol. 1982 Jan;52(1):27-33.</reference_text>
<pubmed_id>7061274</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Blood</biospecimen>
<concentration_value>20.2 +/- 4.0</concentration_value>
<concentration_units>uM</concentration_units>
<subject_age>Adult (&gt;18 years old)</subject_age>
<subject_sex>Both</subject_sex>
<subject_condition>Normal</subject_condition>
<references>
<reference>
<reference_text>Dohm GL, Williams RT, Kasperek GJ, van Rij AM: Increased excretion of urea and N tau -methylhistidine by rats and humans after a bout of exercise. J Appl Physiol Respir Environ Exerc Physiol. 1982 Jan;52(1):27-33.</reference_text>
<pubmed_id>7061274</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Blood</biospecimen>
<concentration_value>9.1 +/- 7.2</concentration_value>
<concentration_units>uM</concentration_units>
<subject_age>Children (1-13 years old)</subject_age>
<subject_sex>Not Specified</subject_sex>
<subject_condition>Normal</subject_condition>
<references>
<reference>
<reference_text>Geigy Scientific Tables, 8th Rev edition, pp. 85-97. Edited by C. Lentner, West Cadwell, N.J.: Medical education Div., Ciba-Geigy Corp., Basel, Switzerland c1981-1992.</reference_text>
<pubmed_id/>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Blood</biospecimen>
<concentration_value>4.0 +/- 8.0</concentration_value>
<concentration_units>uM</concentration_units>
<subject_age>Adult (&gt;18 years old)</subject_age>
<subject_sex>Both</subject_sex>
<subject_condition>Normal</subject_condition>
<references>
<reference>
<reference_text>Geigy Scientific Tables, 8th Rev edition, pp. 85-97. Edited by C. Lentner, West Cadwell, N.J.: Medical education Div., Ciba-Geigy Corp., Basel, Switzerland c1981-1992.</reference_text>
<pubmed_id/>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Cerebrospinal Fluid (CSF)</biospecimen>
<concentration_value>4.0 +/- 1.74</concentration_value>
<concentration_units>uM</concentration_units>
<subject_age>Adult (&gt;18 years old)</subject_age>
<subject_sex>Both</subject_sex>
<subject_condition>Normal</subject_condition>
<references>
<reference>
<reference_text>Fonteh AN, Harrington RJ, Tsai A, Liao P, Harrington MG: Free amino acid and dipeptide changes in the body fluids from Alzheimer's disease subjects. Amino Acids. 2007 Feb;32(2):213-24. Epub 2006 Oct 10.</reference_text>
<pubmed_id>17031479</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Feces</biospecimen>
<concentration_value/>
<concentration_units/>
<subject_age>Not Specified</subject_age>
<subject_sex>Both</subject_sex>
<subject_condition>Normal</subject_condition>
<comment>By CIL LC-MS </comment>
<references>
<reference>
<reference_text>Xu W, Chen D, Wang N, Zhang T, Zhou R, Huan T, Lu Y, Su X, Xie Q, Li L, Li L: Development of high-performance chemical isotope labeling LC-MS for profiling the human fecal metabolome. Anal Chem. 2015 Jan 20;87(2):829-36. doi: 10.1021/ac503619q. Epub 2014 Dec 25.</reference_text>
<pubmed_id>25486321</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Feces</biospecimen>
<concentration_value/>
<concentration_units/>
<subject_age>Adult (&gt;18 years old)</subject_age>
<subject_sex>Both</subject_sex>
<subject_condition>Normal</subject_condition>
<comment>Lyophilized feces samples (n=18) were used in the study. Instrument: LC-MS. Technology specification: UPLC-MS/MS in multiple conditions; authentic standards (metabolon).</comment>
<references>
<reference>
<reference_text>Loftfield E, Vogtmann E, Sampson JN, Moore SC, Nelson H, Knight R, Chia N, Sinha R: Comparison of Collection Methods for Fecal Samples for Discovery Metabolomics in Epidemiologic Studies. Cancer Epidemiol Biomarkers Prev. 2016 Nov;25(11):1483-1490. doi: 10.1158/1055-9965.EPI-16-0409. Epub 2016 Aug 19.</reference_text>
<pubmed_id>27543620</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Saliva</biospecimen>
<concentration_value>26.34</concentration_value>
<concentration_units>uM</concentration_units>
<subject_age>Adult (&gt;18 years old)</subject_age>
<subject_sex>Both</subject_sex>
<subject_condition>Normal</subject_condition>
<references>
<reference>
<reference_text>Vranic L, Granic P, Rajic Z: Basic amino acid in the pathogenesis of caries. Acta Stomatol Croat. 1991;25(2):71-6.</reference_text>
<pubmed_id>1819935</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Urine</biospecimen>
<concentration_value>10-17 </concentration_value>
<concentration_units>umol/mmol creatinine</concentration_units>
<subject_age>Adult (&gt;18 years old)</subject_age>
<subject_sex>Female</subject_sex>
<subject_condition>Normal</subject_condition>
<references>
<reference>
<reference_text>Husek P, Svagera Z, Hanzlikova D, Rimnacova L, Zahradnickova H, Opekarova I, Simek P: Profiling of urinary amino-carboxylic metabolites by in-situ heptafluorobutyl chloroformate mediated sample preparation and gas chromatography-mass spectrometry. J Chromatogr A. 2016 Apr 22;1443:211-32. doi: 10.1016/j.chroma.2016.03.019. Epub 2016 Mar 10.</reference_text>
<pubmed_id>27012787</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Urine</biospecimen>
<concentration_value/>
<concentration_units/>
<subject_age/>
<subject_sex>Male</subject_sex>
<subject_condition>Normal</subject_condition>
<references>
<reference>
<reference_text>Jacobs DM, Spiesser L, Garnier M, de Roo N, van Dorsten F, Hollebrands B, van Velzen E, Draijer R, van Duynhoven J: SPE-NMR metabolite sub-profiling of urine. Anal Bioanal Chem. 2012 Nov;404(8):2349-61. doi: 10.1007/s00216-012-6339-2. Epub 2012 Aug 31.</reference_text>
<pubmed_id>22932811</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Urine</biospecimen>
<concentration_value>17.74-153.77</concentration_value>
<concentration_units>umol/mmol creatinine</concentration_units>
<subject_age>Adult (&gt;18 years old)</subject_age>
<subject_sex>Both</subject_sex>
<subject_condition>Normal</subject_condition>
<references>
<reference>
<reference_text>David F. Putnam Composition and Concentrative Properties of Human Urine. NASA Contractor Report. July 1971</reference_text>
<pubmed_id/>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Urine</biospecimen>
<concentration_value>8.3 (2.4-28.4)</concentration_value>
<concentration_units>umol/mmol creatinine</concentration_units>
<subject_age>Adult (&gt;18 years old)</subject_age>
<subject_sex>Both</subject_sex>
<subject_condition>Normal</subject_condition>
<comment>urine by NMR</comment>
<references>
<reference>
<reference_text>Bouatra S, Aziat F, Mandal R, Guo AC, Wilson MR, Knox C, Bjorndahl TC, Krishnamurthy R, Saleem F, Liu P, Dame ZT, Poelzer J, Huynh J, Yallou FS, Psychogios N, Dong E, Bogumil R, Roehring C, Wishart DS: The human urine metabolome. PLoS One. 2013 Sep 4;8(9):e73076. doi: 10.1371/journal.pone.0073076. eCollection 2013.</reference_text>
<pubmed_id>24023812</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Urine</biospecimen>
<concentration_value>15.9 +/- 19.5 </concentration_value>
<concentration_units>umol/mmol creatinine</concentration_units>
<subject_age>Adult (&gt;18 years old)</subject_age>
<subject_sex>Female</subject_sex>
<subject_condition>Normal</subject_condition>
<references>
<reference>
<reference_text>Myint T, Fraser GE, Lindsted KD, Knutsen SF, Hubbard RW, Bennett HW: Urinary 1-methylhistidine is a marker of meat consumption in Black and in White California Seventh-day Adventists. Am J Epidemiol. 2000 Oct 15;152(8):752-5.</reference_text>
<pubmed_id>11052553</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Urine</biospecimen>
<concentration_value>46.0833 +/- 53.432</concentration_value>
<concentration_units>umol/mmol creatinine</concentration_units>
<subject_age>Adult (&gt;18 years old)</subject_age>
<subject_sex>Female</subject_sex>
<subject_condition>Normal</subject_condition>
<comment>Blacks - Omnivores. From Exposome Explorer.</comment>
<references>
<reference>
<reference_text>Myint T, Fraser GE, Lindsted KD, Knutsen SF, Hubbard RW, Bennett HW: Urinary 1-methylhistidine is a marker of meat consumption in Black and in White California Seventh-day Adventists. Am J Epidemiol. 2000 Oct 15;152(8):752-5.</reference_text>
<pubmed_id>11052553</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Urine</biospecimen>
<concentration_value>11-16 </concentration_value>
<concentration_units>umol/mmol creatinine</concentration_units>
<subject_age>Adult (&gt;18 years old)</subject_age>
<subject_sex>Male</subject_sex>
<subject_condition>Normal</subject_condition>
<references>
<reference>
<reference_text>Husek P, Svagera Z, Hanzlikova D, Rimnacova L, Zahradnickova H, Opekarova I, Simek P: Profiling of urinary amino-carboxylic metabolites by in-situ heptafluorobutyl chloroformate mediated sample preparation and gas chromatography-mass spectrometry. J Chromatogr A. 2016 Apr 22;1443:211-32. doi: 10.1016/j.chroma.2016.03.019. Epub 2016 Mar 10.</reference_text>
<pubmed_id>27012787</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Urine</biospecimen>
<concentration_value>45.473 +/- 41.617</concentration_value>
<concentration_units>umol/mmol creatinine</concentration_units>
<subject_age>Adult (&gt;18 years old)</subject_age>
<subject_sex>Male</subject_sex>
<subject_condition>Normal</subject_condition>
<comment>Blacks - Omnivores. From Exposome Explorer.</comment>
<references>
<reference>
<reference_text>Myint T, Fraser GE, Lindsted KD, Knutsen SF, Hubbard RW, Bennett HW: Urinary 1-methylhistidine is a marker of meat consumption in Black and in White California Seventh-day Adventists. Am J Epidemiol. 2000 Oct 15;152(8):752-5.</reference_text>
<pubmed_id>11052553</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Urine</biospecimen>
<concentration_value>15.919 +/- 19.503</concentration_value>
<concentration_units>umol/mmol creatinine</concentration_units>
<subject_age>Adult (&gt;18 years old)</subject_age>
<subject_sex>Female</subject_sex>
<subject_condition>Normal</subject_condition>
<comment>Blacks - Vegetarians. From Exposome Explorer.</comment>
<references>
<reference>
<reference_text>Myint T, Fraser GE, Lindsted KD, Knutsen SF, Hubbard RW, Bennett HW: Urinary 1-methylhistidine is a marker of meat consumption in Black and in White California Seventh-day Adventists. Am J Epidemiol. 2000 Oct 15;152(8):752-5.</reference_text>
<pubmed_id>11052553</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Urine</biospecimen>
<concentration_value>4.635</concentration_value>
<concentration_units>umol/mmol creatinine</concentration_units>
<subject_age>Adult (&gt;18 years old)</subject_age>
<subject_sex>Male</subject_sex>
<subject_condition>Normal</subject_condition>
<comment>Blacks - Vegetarians. From Exposome Explorer.</comment>
<references>
<reference>
<reference_text>Myint T, Fraser GE, Lindsted KD, Knutsen SF, Hubbard RW, Bennett HW: Urinary 1-methylhistidine is a marker of meat consumption in Black and in White California Seventh-day Adventists. Am J Epidemiol. 2000 Oct 15;152(8):752-5.</reference_text>
<pubmed_id>11052553</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Urine</biospecimen>
<concentration_value>33.624 +/- 36.360</concentration_value>
<concentration_units>umol/mmol creatinine</concentration_units>
<subject_age>Adult (&gt;18 years old)</subject_age>
<subject_sex>Female</subject_sex>
<subject_condition>Normal</subject_condition>
<comment>Whites - Omnivores. From Exposome Explorer.</comment>
<references>
<reference>
<reference_text>Myint T, Fraser GE, Lindsted KD, Knutsen SF, Hubbard RW, Bennett HW: Urinary 1-methylhistidine is a marker of meat consumption in Black and in White California Seventh-day Adventists. Am J Epidemiol. 2000 Oct 15;152(8):752-5.</reference_text>
<pubmed_id>11052553</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Urine</biospecimen>
<concentration_value>28.0954 +/- 31.826</concentration_value>
<concentration_units>umol/mmol creatinine</concentration_units>
<subject_age>Adult (&gt;18 years old)</subject_age>
<subject_sex>Male</subject_sex>
<subject_condition>Normal</subject_condition>
<comment>Whites - Omnivores. From Exposome Explorer.</comment>
<references>
<reference>
<reference_text>Myint T, Fraser GE, Lindsted KD, Knutsen SF, Hubbard RW, Bennett HW: Urinary 1-methylhistidine is a marker of meat consumption in Black and in White California Seventh-day Adventists. Am J Epidemiol. 2000 Oct 15;152(8):752-5.</reference_text>
<pubmed_id>11052553</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Urine</biospecimen>
<concentration_value>2.340 +/- 5.0764</concentration_value>
<concentration_units>umol/mmol creatinine</concentration_units>
<subject_age>Adult (&gt;18 years old)</subject_age>
<subject_sex>Female</subject_sex>
<subject_condition>Normal</subject_condition>
<comment>Whites - Vegetarians. From Exposome Explorer.</comment>
<references>
<reference>
<reference_text>Myint T, Fraser GE, Lindsted KD, Knutsen SF, Hubbard RW, Bennett HW: Urinary 1-methylhistidine is a marker of meat consumption in Black and in White California Seventh-day Adventists. Am J Epidemiol. 2000 Oct 15;152(8):752-5.</reference_text>
<pubmed_id>11052553</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Urine</biospecimen>
<concentration_value>1.334 +/- 2.759</concentration_value>
<concentration_units>umol/mmol creatinine</concentration_units>
<subject_age>Adult (&gt;18 years old)</subject_age>
<subject_sex>Male</subject_sex>
<subject_condition>Normal</subject_condition>
<comment>Whites - Vegetarians. From Exposome Explorer.</comment>
<references>
<reference>
<reference_text>Myint T, Fraser GE, Lindsted KD, Knutsen SF, Hubbard RW, Bennett HW: Urinary 1-methylhistidine is a marker of meat consumption in Black and in White California Seventh-day Adventists. Am J Epidemiol. 2000 Oct 15;152(8):752-5.</reference_text>
<pubmed_id>11052553</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Urine</biospecimen>
<concentration_value>30.0 +/- 43.0</concentration_value>
<concentration_units>umol/mmol creatinine</concentration_units>
<subject_age>Adult (&gt;18 years old)</subject_age>
<subject_sex>Both</subject_sex>
<subject_condition>Normal</subject_condition>
<references>
<reference>
<reference_text>Tuma P, Samcova E, Balinova P: Determination of 3-methylhistidine and 1-methylhistidine in untreated urine samples by capillary electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci. 2005 Jul 5;821(1):53-9.</reference_text>
<pubmed_id>15899597</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Urine</biospecimen>
<concentration_value>4.6 +/- 2.7</concentration_value>
<concentration_units>umol/mmol creatinine</concentration_units>
<subject_age>Adult (&gt;18 years old)</subject_age>
<subject_sex>Male</subject_sex>
<subject_condition>Normal</subject_condition>
<references>
<reference>
<reference_text>Myint T, Fraser GE, Lindsted KD, Knutsen SF, Hubbard RW, Bennett HW: Urinary 1-methylhistidine is a marker of meat consumption in Black and in White California Seventh-day Adventists. Am J Epidemiol. 2000 Oct 15;152(8):752-5.</reference_text>
<pubmed_id>11052553</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Urine</biospecimen>
<concentration_value>2.3 +/- 5.1</concentration_value>
<concentration_units>umol/mmol creatinine</concentration_units>
<subject_age>Adult (&gt;18 years old)</subject_age>
<subject_sex>Female</subject_sex>
<subject_condition>Normal</subject_condition>
<references>
<reference>
<reference_text>Myint T, Fraser GE, Lindsted KD, Knutsen SF, Hubbard RW, Bennett HW: Urinary 1-methylhistidine is a marker of meat consumption in Black and in White California Seventh-day Adventists. Am J Epidemiol. 2000 Oct 15;152(8):752-5.</reference_text>
<pubmed_id>11052553</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Urine</biospecimen>
<concentration_value>46.1 +/- 53.5</concentration_value>
<concentration_units>umol/mmol creatinine</concentration_units>
<subject_age>Adult (&gt;18 years old)</subject_age>
<subject_sex>Female</subject_sex>
<subject_condition>Normal</subject_condition>
<references>
<reference>
<reference_text>Myint T, Fraser GE, Lindsted KD, Knutsen SF, Hubbard RW, Bennett HW: Urinary 1-methylhistidine is a marker of meat consumption in Black and in White California Seventh-day Adventists. Am J Epidemiol. 2000 Oct 15;152(8):752-5.</reference_text>
<pubmed_id>11052553</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Urine</biospecimen>
<concentration_value>15.9 +/- 19.5</concentration_value>
<concentration_units>umol/mmol creatinine</concentration_units>
<subject_age>Adult (&gt;18 years old)</subject_age>
<subject_sex>Female</subject_sex>
<subject_condition>Normal</subject_condition>
<references>
<reference>
<reference_text>Myint T, Fraser GE, Lindsted KD, Knutsen SF, Hubbard RW, Bennett HW: Urinary 1-methylhistidine is a marker of meat consumption in Black and in White California Seventh-day Adventists. Am J Epidemiol. 2000 Oct 15;152(8):752-5.</reference_text>
<pubmed_id>11052553</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Urine</biospecimen>
<concentration_value>28.1 +/- 31.8</concentration_value>
<concentration_units>umol/mmol creatinine</concentration_units>
<subject_age>Adult (&gt;18 years old)</subject_age>
<subject_sex>Male</subject_sex>
<subject_condition>Normal</subject_condition>
<references>
<reference>
<reference_text>Myint T, Fraser GE, Lindsted KD, Knutsen SF, Hubbard RW, Bennett HW: Urinary 1-methylhistidine is a marker of meat consumption in Black and in White California Seventh-day Adventists. Am J Epidemiol. 2000 Oct 15;152(8):752-5.</reference_text>
<pubmed_id>11052553</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Urine</biospecimen>
<concentration_value>1.3 +/- 2.76</concentration_value>
<concentration_units>umol/mmol creatinine</concentration_units>
<subject_age>Adult (&gt;18 years old)</subject_age>
<subject_sex>Male</subject_sex>
<subject_condition>Normal</subject_condition>
<references>
<reference>
<reference_text>Myint T, Fraser GE, Lindsted KD, Knutsen SF, Hubbard RW, Bennett HW: Urinary 1-methylhistidine is a marker of meat consumption in Black and in White California Seventh-day Adventists. Am J Epidemiol. 2000 Oct 15;152(8):752-5.</reference_text>
<pubmed_id>11052553</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Urine</biospecimen>
<concentration_value>45.5 +/- 41.6</concentration_value>
<concentration_units>umol/mmol creatinine</concentration_units>
<subject_age>Adult (&gt;18 years old)</subject_age>
<subject_sex>Male</subject_sex>
<subject_condition>Normal</subject_condition>
<references>
<reference>
<reference_text>Myint T, Fraser GE, Lindsted KD, Knutsen SF, Hubbard RW, Bennett HW: Urinary 1-methylhistidine is a marker of meat consumption in Black and in White California Seventh-day Adventists. Am J Epidemiol. 2000 Oct 15;152(8):752-5.</reference_text>
<pubmed_id>11052553</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Urine</biospecimen>
<concentration_value>33.6 +/- 36.4</concentration_value>
<concentration_units>umol/mmol creatinine</concentration_units>
<subject_age>Adult (&gt;18 years old)</subject_age>
<subject_sex>Female</subject_sex>
<subject_condition>Normal</subject_condition>
<references>
<reference>
<reference_text>Myint T, Fraser GE, Lindsted KD, Knutsen SF, Hubbard RW, Bennett HW: Urinary 1-methylhistidine is a marker of meat consumption in Black and in White California Seventh-day Adventists. Am J Epidemiol. 2000 Oct 15;152(8):752-5.</reference_text>
<pubmed_id>11052553</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Urine</biospecimen>
<concentration_value>21.329 +/- 12.971</concentration_value>
<concentration_units>umol/mmol creatinine</concentration_units>
<subject_age>Children (1 - 13 years old)</subject_age>
<subject_sex>Not Specified</subject_sex>
<subject_condition>Normal</subject_condition>
<comment>By NMR</comment>
<references>
<reference>
<reference_text>Mordechai, Hien, and David S. Wishart</reference_text>
<pubmed_id/>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Urine</biospecimen>
<concentration_value/>
<concentration_units/>
<subject_age>Adult (&gt;18 years old)</subject_age>
<subject_sex>Male</subject_sex>
<subject_condition>Normal</subject_condition>
<comment>Under omnivorous diet</comment>
<references>
<reference>
<reference_text>Stella C, Beckwith-Hall B, Cloarec O, Holmes E, Lindon JC, Powell J, van der Ouderaa F, Bingham S, Cross AJ, Nicholson JK: Susceptibility of human metabolic phenotypes to dietary modulation. J Proteome Res. 2006 Oct;5(10):2780-8.</reference_text>
<pubmed_id>17022649</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Urine</biospecimen>
<concentration_value/>
<concentration_units/>
<subject_age>Adult (&gt;18 years old)</subject_age>
<subject_sex>Both</subject_sex>
<subject_condition>Normal</subject_condition>
<comment>With fish (Salmon) consumption</comment>
<references>
<reference>
<reference_text>Lloyd AJ, Beckmann M, Fave G, Mathers JC, Draper J: Proline betaine and its biotransformation products in fasting urine samples are potential biomarkers of habitual citrus fruit consumption. Br J Nutr. 2011 Sep;106(6):812-24. doi: 10.1017/S0007114511001164. Epub 2011 May 9.</reference_text>
<pubmed_id>21736852</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Urine</biospecimen>
<concentration_value/>
<concentration_units/>
<subject_age>Adult (&gt;18 years old)</subject_age>
<subject_sex>Both</subject_sex>
<subject_condition>Normal</subject_condition>
<comment>Healthy condition not specified, assume it is healthy</comment>
<references>
<reference>
<reference_text>Lloyd AJ, Beckmann M, Haldar S, Seal C, Brandt K, Draper J: Data-driven strategy for the discovery of potential urinary biomarkers of habitual dietary exposure. Am J Clin Nutr. 2013 Feb;97(2):377-89. doi: 10.3945/ajcn.112.048033. Epub 2012 Dec 26.</reference_text>
<pubmed_id>23269817</pubmed_id>
</reference>
</references>
</concentration>
</normal_concentrations>
<abnormal_concentrations>
<concentration>
<biospecimen>Blood</biospecimen>
<concentration_value>51.2 +/- 17.6 </concentration_value>
<concentration_units>uM</concentration_units>
<patient_age>Adult (&gt;18 years old)</patient_age>
<patient_sex>Female</patient_sex>
<patient_information>Pregnancy with fetuses with trisomy 18</patient_information>
<comment>Pregnancies between 11 weeks and 13 weeks 6 daysâa gestation with fetuses with trisomy 18</comment>
<references>
<reference>
<reference_text>Bahado-Singh RO, Akolekar R, Chelliah A, Mandal R, Dong E, Kruger M, Wishart DS, Nicolaides K: Metabolomic analysis for first-trimester trisomy 18 detection. Am J Obstet Gynecol. 2013 Jul;209(1):65.e1-9. doi: 10.1016/j.ajog.2013.03.028. Epub 2013 Mar 25.</reference_text>
<pubmed_id>23535240</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Blood</biospecimen>
<concentration_value>43.4 +/- 22.3 </concentration_value>
<concentration_units>uM</concentration_units>
<patient_age>Adult (&gt;18 years old)</patient_age>
<patient_sex>Female</patient_sex>
<patient_information>Pregnancy</patient_information>
<references>
<reference>
<reference_text>Bahado-Singh RO, Akolekar R, Chelliah A, Mandal R, Dong E, Kruger M, Wishart DS, Nicolaides K: Metabolomic analysis for first-trimester trisomy 18 detection. Am J Obstet Gynecol. 2013 Jul;209(1):65.e1-9. doi: 10.1016/j.ajog.2013.03.028. Epub 2013 Mar 25.</reference_text>
<pubmed_id>23535240</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Blood</biospecimen>
<concentration_value>50.7 (12.9) </concentration_value>
<concentration_units>uM</concentration_units>
<patient_age>Adult (&gt;18 years old)</patient_age>
<patient_sex>Female</patient_sex>
<patient_information>Early preeclampsia</patient_information>
<references>
<reference>
<reference_text>Bahado-Singh RO, Akolekar R, Mandal R, Dong E, Xia J, Kruger M, Wishart DS, Nicolaides K: Metabolomics and first-trimester prediction of early-onset preeclampsia. J Matern Fetal Neonatal Med. 2012 Oct;25(10):1840-7. doi: 10.3109/14767058.2012.680254. Epub 2012 Apr 28.</reference_text>
<pubmed_id>22494326</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Blood</biospecimen>
<concentration_value>50.0 (14.6) </concentration_value>
<concentration_units>uM</concentration_units>
<patient_age>Adult (&gt;18 years old)</patient_age>
<patient_sex>Female</patient_sex>
<patient_information>Pregnancy</patient_information>
<references>
<reference>
<reference_text>Bahado-Singh RO, Akolekar R, Mandal R, Dong E, Xia J, Kruger M, Wishart DS, Nicolaides K: Metabolomics and first-trimester prediction of early-onset preeclampsia. J Matern Fetal Neonatal Med. 2012 Oct;25(10):1840-7. doi: 10.3109/14767058.2012.680254. Epub 2012 Apr 28.</reference_text>
<pubmed_id>22494326</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Blood</biospecimen>
<concentration_value>28.8 +/- 18.2</concentration_value>
<concentration_units>uM</concentration_units>
<patient_age>Adult (&gt;18 years old)</patient_age>
<patient_sex>Both</patient_sex>
<patient_information>Kidney disease</patient_information>
<comment>Patients with chronic renal failure on maintenance hemodialysis. These subjects were treated with nocturnal hemodialysis for 8 h during the night, 6 times/week.</comment>
<references>
<reference>
<reference_text>Raj DS, Ouwendyk M, Francoeur R, Pierratos A: Plasma amino acid profile on nocturnal hemodialysis. Blood Purif. 2000;18(2):97-102.</reference_text>
<pubmed_id>10838467</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Blood</biospecimen>
<concentration_value>83.1 +/- 21.7</concentration_value>
<concentration_units>uM</concentration_units>
<patient_age>Adult (&gt;18 years old)</patient_age>
<patient_sex>Both</patient_sex>
<patient_information>Kidney disease</patient_information>
<comment>Patients with chronic renal failure on maintenance hemodialysis. These subjects were treated with conventional hemodialysis for 4 h, 3 times/week.</comment>
<references>
<reference>
<reference_text>Raj DS, Ouwendyk M, Francoeur R, Pierratos A: Plasma amino acid profile on nocturnal hemodialysis. Blood Purif. 2000;18(2):97-102.</reference_text>
<pubmed_id>10838467</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Blood</biospecimen>
<concentration_value>70.3 (40.0) </concentration_value>
<concentration_units>uM</concentration_units>
<patient_age>Adult (&gt;18 years old)</patient_age>
<patient_sex>Female</patient_sex>
<patient_information>Late-onset preeclampsia</patient_information>
<references>
<reference>
<reference_text>Bahado-Singh RO, Akolekar R, Mandal R, Dong E, Xia J, Kruger M, Wishart DS, Nicolaides K: First-trimester metabolomic detection of late-onset preeclampsia. Am J Obstet Gynecol. 2013 Jan;208(1):58.e1-7. doi: 10.1016/j.ajog.2012.11.003. Epub 2012 Nov 13.</reference_text>
<pubmed_id>23159745</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Blood</biospecimen>
<concentration_value>38.9 (20.3) </concentration_value>
<concentration_units>uM</concentration_units>
<patient_age>Adult (&gt;18 years old)</patient_age>
<patient_sex>Female</patient_sex>
<patient_information>Pregnancy</patient_information>
<references>
<reference>
<reference_text>Bahado-Singh RO, Akolekar R, Mandal R, Dong E, Xia J, Kruger M, Wishart DS, Nicolaides K: First-trimester metabolomic detection of late-onset preeclampsia. Am J Obstet Gynecol. 2013 Jan;208(1):58.e1-7. doi: 10.1016/j.ajog.2012.11.003. Epub 2012 Nov 13.</reference_text>
<pubmed_id>23159745</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Blood</biospecimen>
<concentration_value>10.66 +/- 2.68</concentration_value>
<concentration_units>uM</concentration_units>
<patient_age>Elderly (&gt;65 years old)</patient_age>
<patient_sex>Both</patient_sex>
<patient_information>Alzheimer's disease</patient_information>
<comment>Probable Alzheimer's disease</comment>
<references>
<reference>
<reference_text>Fonteh AN, Harrington RJ, Tsai A, Liao P, Harrington MG: Free amino acid and dipeptide changes in the body fluids from Alzheimer's disease subjects. Amino Acids. 2007 Feb;32(2):213-24. Epub 2006 Oct 10.</reference_text>
<pubmed_id>17031479</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Blood</biospecimen>
<concentration_value>40.4 (12.3) </concentration_value>
<concentration_units>uM</concentration_units>
<patient_age>Adult (&gt;18 years old)</patient_age>
<patient_sex>Female</patient_sex>
<patient_information>Down syndrome pregnancy</patient_information>
<references>
<reference>
<reference_text>Bahado-Singh RO, Akolekar R, Mandal R, Dong E, Xia J, Kruger M, Wishart DS, Nicolaides K: Metabolomic analysis for first-trimester Down syndrome prediction. Am J Obstet Gynecol. 2013 May;208(5):371.e1-8. doi: 10.1016/j.ajog.2012.12.035. Epub 2013 Jan 8.</reference_text>
<pubmed_id>23313728</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Blood</biospecimen>
<concentration_value>32.7 (13.7) </concentration_value>
<concentration_units>uM</concentration_units>
<patient_age>Adult (&gt;18 years old)</patient_age>
<patient_sex>Female</patient_sex>
<patient_information>Pregnancy</patient_information>
<references>
<reference>
<reference_text>Bahado-Singh RO, Akolekar R, Mandal R, Dong E, Xia J, Kruger M, Wishart DS, Nicolaides K: Metabolomic analysis for first-trimester Down syndrome prediction. Am J Obstet Gynecol. 2013 May;208(5):371.e1-8. doi: 10.1016/j.ajog.2012.12.035. Epub 2013 Jan 8.</reference_text>
<pubmed_id>23313728</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Cerebrospinal Fluid (CSF)</biospecimen>
<concentration_value>2.6 +/- 1.13</concentration_value>
<concentration_units>uM</concentration_units>
<patient_age>Adult (&gt;18 years old)</patient_age>
<patient_sex>Both</patient_sex>
<patient_information>Alzheimer's disease</patient_information>
<references>
<reference>
<reference_text>Fonteh AN, Harrington RJ, Tsai A, Liao P, Harrington MG: Free amino acid and dipeptide changes in the body fluids from Alzheimer's disease subjects. Amino Acids. 2007 Feb;32(2):213-24. Epub 2006 Oct 10.</reference_text>
<pubmed_id>17031479</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Urine</biospecimen>
<concentration_value>10.9 +/- 10.1</concentration_value>
<concentration_units>umol/mmol creatinine</concentration_units>
<patient_age>Adult (&gt;18 years old)</patient_age>
<patient_sex>Both</patient_sex>
<patient_information>Obesity</patient_information>
<references>
<reference>
<reference_text>Tuma P, Samcova E, Balinova P: Determination of 3-methylhistidine and 1-methylhistidine in untreated urine samples by capillary electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci. 2005 Jul 5;821(1):53-9.</reference_text>
<pubmed_id>15899597</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Urine</biospecimen>
<concentration_value>17.5 +/- 25.7</concentration_value>
<concentration_units>umol/mmol creatinine</concentration_units>
<patient_age>Adult (&gt;18 years old)</patient_age>
<patient_sex>Both</patient_sex>
<patient_information>Diabetes</patient_information>
<references>
<reference>
<reference_text>Tuma P, Samcova E, Balinova P: Determination of 3-methylhistidine and 1-methylhistidine in untreated urine samples by capillary electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci. 2005 Jul 5;821(1):53-9.</reference_text>
<pubmed_id>15899597</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Urine</biospecimen>
<concentration_value>15.7 +/- 4.04</concentration_value>
<concentration_units>umol/mmol creatinine</concentration_units>
<patient_age>Adult (&gt;18 years old)</patient_age>
<patient_sex>Both</patient_sex>
<patient_information>Alzheimer's disease </patient_information>
<comment>Probable Alzheimer's disease</comment>
<references>
<reference>
<reference_text>Fonteh AN, Harrington RJ, Tsai A, Liao P, Harrington MG: Free amino acid and dipeptide changes in the body fluids from Alzheimer's disease subjects. Amino Acids. 2007 Feb;32(2):213-24. Epub 2006 Oct 10.</reference_text>
<pubmed_id>17031479</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Urine</biospecimen>
<concentration_value>18.299 +/- 16.521</concentration_value>
<concentration_units>umol/mmol creatinine</concentration_units>
<patient_age>Children (1 - 13 years old)</patient_age>
<patient_sex>Not Specified</patient_sex>
<patient_information>Eosinophilic esophagitis</patient_information>
<comment>By NMR</comment>
<references>
<reference>
<reference_text>Mordechai, Hien, and David S. Wishart</reference_text>
<pubmed_id/>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Urine</biospecimen>
<concentration_value>40 +/- 2.6</concentration_value>
<concentration_units>umol/mmol creatinine</concentration_units>
<patient_age>Adult (&gt;18 years old)</patient_age>
<patient_sex>Both</patient_sex>
<patient_information>Propionic acidemia </patient_information>
<references>
<reference>
<reference_text>Gronwald W, Klein MS, Kaspar H, Fagerer SR, Nurnberger N, Dettmer K, Bertsch T, Oefner PJ: Urinary metabolite quantification employing 2D NMR spectroscopy. Anal Chem. 2008 Dec 1;80(23):9288-97. doi: 10.1021/ac801627c.</reference_text>
<pubmed_id>19551947</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Urine</biospecimen>
<concentration_value>31 +/- 11</concentration_value>
<concentration_units>umol/mmol creatinine</concentration_units>
<patient_age>Adult (&gt;18 years old)</patient_age>
<patient_sex>Both</patient_sex>
<patient_information>Maple syrup urine disease </patient_information>
<references>
<reference>
<reference_text>Gronwald W, Klein MS, Kaspar H, Fagerer SR, Nurnberger N, Dettmer K, Bertsch T, Oefner PJ: Urinary metabolite quantification employing 2D NMR spectroscopy. Anal Chem. 2008 Dec 1;80(23):9288-97. doi: 10.1021/ac801627c.</reference_text>
<pubmed_id>19551947</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Urine</biospecimen>
<concentration_value>50.3 +/- 9.9</concentration_value>
<concentration_units>umol/mmol creatinine</concentration_units>
<patient_age>Adult (&gt;18 years old)</patient_age>
<patient_sex>Both</patient_sex>
<patient_information>Aminoaciduria</patient_information>
<references>
<reference>
<reference_text>Gronwald W, Klein MS, Kaspar H, Fagerer SR, Nurnberger N, Dettmer K, Bertsch T, Oefner PJ: Urinary metabolite quantification employing 2D NMR spectroscopy. Anal Chem. 2008 Dec 1;80(23):9288-97. doi: 10.1021/ac801627c.</reference_text>
<pubmed_id>19551947</pubmed_id>
</reference>
</references>
</concentration>
</abnormal_concentrations>
<diseases>
<disease>
<name>Alzheimer's disease</name>
<omim_id>104300</omim_id>
<references>
<reference>
<reference_text>Redjems-Bennani N, Jeandel C, Lefebvre E, Blain H, Vidailhet M, Gueant JL: Abnormal substrate levels that depend upon mitochondrial function in cerebrospinal fluid from Alzheimer patients. Gerontology. 1998;44(5):300-4.</reference_text>
<pubmed_id>9693263</pubmed_id>
</reference>
<reference>
<reference_text>Raskind MA, Peskind ER, Holmes C, Goldstein DS: Patterns of cerebrospinal fluid catechols support increased central noradrenergic responsiveness in aging and Alzheimer's disease. Biol Psychiatry. 1999 Sep 15;46(6):756-65.</reference_text>
<pubmed_id>10494443</pubmed_id>
</reference>
<reference>
<reference_text>Walter A, Korth U, Hilgert M, Hartmann J, Weichel O, Hilgert M, Fassbender K, Schmitt A, Klein J: Glycerophosphocholine is elevated in cerebrospinal fluid of Alzheimer patients. Neurobiol Aging. 2004 Nov-Dec;25(10):1299-303.</reference_text>
<pubmed_id>15465626</pubmed_id>
</reference>
<reference>
<reference_text>Selley ML, Close DR, Stern SE: The effect of increased concentrations of homocysteine on the concentration of (E)-4-hydroxy-2-nonenal in the plasma and cerebrospinal fluid of patients with Alzheimer's disease. Neurobiol Aging. 2002 May-Jun;23(3):383-8.</reference_text>
<pubmed_id>11959400</pubmed_id>
</reference>
<reference>
<reference_text>Molina JA, Jimenez-Jimenez FJ, Hernanz A, Fernandez-Vivancos E, Medina S, de Bustos F, Gomez-Escalonilla C, Sayed Y: Cerebrospinal fluid levels of thiamine in patients with Alzheimer's disease. J Neural Transm (Vienna). 2002 Jul;109(7-8):1035-44.</reference_text>
<pubmed_id>12111441</pubmed_id>
</reference>
<reference>
<reference_text>Serot JM, Barbe F, Arning E, Bottiglieri T, Franck P, Montagne P, Nicolas JP: Homocysteine and methylmalonic acid concentrations in cerebrospinal fluid: relation with age and Alzheimer's disease. J Neurol Neurosurg Psychiatry. 2005 Nov;76(11):1585-7.</reference_text>
<pubmed_id>16227558</pubmed_id>
</reference>
<reference>
<reference_text>Leoni V, Masterman T, Mousavi FS, Wretlind B, Wahlund LO, Diczfalusy U, Hillert J, Bjorkhem I: Diagnostic use of cerebral and extracerebral oxysterols. Clin Chem Lab Med. 2004 Feb;42(2):186-91.</reference_text>
<pubmed_id>15061359</pubmed_id>
</reference>
<reference>
<reference_text>Lovell MA, Markesbery WR: Ratio of 8-hydroxyguanine in intact DNA to free 8-hydroxyguanine is increased in Alzheimer disease ventricular cerebrospinal fluid. Arch Neurol. 2001 Mar;58(3):392-6.</reference_text>
<pubmed_id>11255442</pubmed_id>
</reference>
<reference>
<reference_text>Shetty HU, Holloway HW, Schapiro MB: Cerebrospinal fluid and plasma distribution of myo-inositol and other polyols in Alzheimer disease. Clin Chem. 1996 Feb;42(2):298-302.</reference_text>
<pubmed_id>8595727</pubmed_id>
</reference>
<reference>
<reference_text>Bar KJ, Franke S, Wenda B, Muller S, Kientsch-Engel R, Stein G, Sauer H: Pentosidine and N(epsilon)-(carboxymethyl)-lysine in Alzheimer's disease and vascular dementia. Neurobiol Aging. 2003 Mar-Apr;24(2):333-8.</reference_text>
<pubmed_id>12498967</pubmed_id>
</reference>
<reference>
<reference_text>Fonteh AN, Harrington RJ, Tsai A, Liao P, Harrington MG: Free amino acid and dipeptide changes in the body fluids from Alzheimer's disease subjects. Amino Acids. 2007 Feb;32(2):213-24. Epub 2006 Oct 10.</reference_text>
<pubmed_id>17031479</pubmed_id>
</reference>
<reference>
<reference_text>Jia JP, Jia JM, Zhou WD, Xu M, Chu CB, Yan X, Sun YX: Differential acetylcholine and choline concentrations in the cerebrospinal fluid of patients with Alzheimer's disease and vascular dementia. Chin Med J (Engl). 2004 Aug;117(8):1161-4.</reference_text>
<pubmed_id>15361288</pubmed_id>
</reference>
<reference>
<reference_text>Abe T, Tohgi H, Isobe C, Murata T, Sato C: Remarkable increase in the concentration of 8-hydroxyguanosine in cerebrospinal fluid from patients with Alzheimer's disease. J Neurosci Res. 2002 Nov 1;70(3):447-50.</reference_text>
<pubmed_id>12391605</pubmed_id>
</reference>
<reference>
<reference_text>Molina JA, Jimenez-Jimenez FJ, Aguilar MV, Meseguer I, Mateos-Vega CJ, Gonzalez-Munoz MJ, de Bustos F, Porta J, Orti-Pareja M, Zurdo M, Barrios E, Martinez-Para MC: Cerebrospinal fluid levels of transition metals in patients with Alzheimer's disease. J Neural Transm (Vienna). 1998;105(4-5):479-88.</reference_text>
<pubmed_id>9720975</pubmed_id>
</reference>
<reference>
<reference_text>Bocca B, Forte G, Petrucci F, Pino A, Marchione F, Bomboi G, Senofonte O, Giubilei F, Alimonti A: Monitoring of chemical elements and oxidative damage in patients affected by Alzheimer's disease. Ann Ist Super Sanita. 2005;41(2):197-203.</reference_text>
<pubmed_id>16244393</pubmed_id>
</reference>
<reference>
<reference_text>Kristensen MO, Gulmann NC, Christensen JE, Ostergaard K, Rasmussen K: Serum cobalamin and methylmalonic acid in Alzheimer dementia. Acta Neurol Scand. 1993 Jun;87(6):475-81.</reference_text>
<pubmed_id>8356878</pubmed_id>
</reference>
</references>
</disease>
<disease>
<name>Diabetes mellitus type 2</name>
<omim_id>125853</omim_id>
<references>
<reference>
<reference_text>Tuma P, Samcova E, Balinova P: Determination of 3-methylhistidine and 1-methylhistidine in untreated urine samples by capillary electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci. 2005 Jul 5;821(1):53-9.</reference_text>
<pubmed_id>15899597</pubmed_id>
</reference>
<reference>
<reference_text>Tasker RC, Lutman D, Peters MJ: Hyperventilation in severe diabetic ketoacidosis. Pediatr Crit Care Med. 2005 Jul;6(4):405-11.</reference_text>
<pubmed_id>15982426</pubmed_id>
</reference>
<reference>
<reference_text>Bales JR, Higham DP, Howe I, Nicholson JK, Sadler PJ: Use of high-resolution proton nuclear magnetic resonance spectroscopy for rapid multi-component analysis of urine. Clin Chem. 1984 Mar;30(3):426-32.</reference_text>
<pubmed_id>6321058</pubmed_id>
</reference>
<reference>
<reference_text>Hoppel CL, Genuth SM: Urinary excretion of acetylcarnitine during human diabetic and fasting ketosis. Am J Physiol. 1982 Aug;243(2):E168-72.</reference_text>
<pubmed_id>6810706</pubmed_id>
</reference>
<reference>
<reference_text>Zhang AQ, Mitchell SC, Smith RL: Dimethylamine in human urine. Clin Chim Acta. 1995 Jan 16;233(1-2):81-8.</reference_text>
<pubmed_id>7758205</pubmed_id>
</reference>
<reference>
<reference_text>Blomqvist G, Alvarsson M, Grill V, Von Heijne G, Ingvar M, Thorell JO, Stone-Elander S, Widen L, Ekberg K: Effect of acute hyperketonemia on the cerebral uptake of ketone bodies in nondiabetic subjects and IDDM patients. Am J Physiol Endocrinol Metab. 2002 Jul;283(1):E20-8.</reference_text>
<pubmed_id>12067838</pubmed_id>
</reference>
<reference>
<reference_text>Greco AV, Mingrone G, Capristo E, Benedetti G, De Gaetano A, Gasbarrini G: The metabolic effect of dodecanedioic acid infusion in non-insulin-dependent diabetic patients. Nutrition. 1998 Apr;14(4):351-7.</reference_text>
<pubmed_id>9591306</pubmed_id>
</reference>
<reference>
<reference_text>McLellan AC, Phillips SA, Thornalley PJ: Fluorimetric assay of D-lactate. Anal Biochem. 1992 Oct;206(1):12-6.</reference_text>
<pubmed_id>1456422</pubmed_id>
</reference>
<reference>
<reference_text>Wahl HG, Hoffmann A, Luft D, Liebich HM: Analysis of volatile organic compounds in human urine by headspace gas chromatography-mass spectrometry with a multipurpose sampler. J Chromatogr A. 1999 Jun 25;847(1-2):117-25.</reference_text>
<pubmed_id>10431355</pubmed_id>
</reference>
<reference>
<reference_text>Dungan KM, Buse JB, Largay J, Kelly MM, Button EA, Kato S, Wittlin S: 1,5-anhydroglucitol and postprandial hyperglycemia as measured by continuous glucose monitoring system in moderately controlled patients with diabetes. Diabetes Care. 2006 Jun;29(6):1214-9.</reference_text>
<pubmed_id>16731998</pubmed_id>
</reference>
<reference>
<reference_text>Costa A, Iguala I, Bedini J, Quinto L, Conget I: Uric acid concentration in subjects at risk of type 2 diabetes mellitus: relationship to components of the metabolic syndrome. Metabolism. 2002 Mar;51(3):372-5.</reference_text>
<pubmed_id>11887176</pubmed_id>
</reference>
<reference>
<reference_text>Avogaro A, Bier DM: Contribution of 3-hydroxyisobutyrate to the measurement of 3-hydroxybutyrate in human plasma: comparison of enzymatic and gas-liquid chromatography-mass spectrometry assays in normal and in diabetic subjects. J Lipid Res. 1989 Nov;30(11):1811-7.</reference_text>
<pubmed_id>2614280</pubmed_id>
</reference>
<reference>
<reference_text>Sheikh-Ali M, Karon BS, Basu A, Kudva YC, Muller LA, Xu J, Schwenk WF, Miles JM: Can serum beta-hydroxybutyrate be used to diagnose diabetic ketoacidosis? Diabetes Care. 2008 Apr;31(4):643-7. doi: 10.2337/dc07-1683. Epub 2008 Jan 9.</reference_text>
<pubmed_id>18184896</pubmed_id>
</reference>
<reference>
<reference_text>Kawasaki T, Akanuma H, Yamanouchi T: Increased fructose concentrations in blood and urine in patients with diabetes. Diabetes Care. 2002 Feb;25(2):353-7.</reference_text>
<pubmed_id>11815509</pubmed_id>
</reference>
<reference>
<reference_text>Stickle D, Turk J: A kinetic mass balance model for 1,5-anhydroglucitol: applications to monitoring of glycemic control. Am J Physiol. 1997 Oct;273(4 Pt 1):E821-30.</reference_text>
<pubmed_id>9357814</pubmed_id>
</reference>
<reference>
<reference_text>Nguyen TM, Rodriguez LM, Mason KJ, Heptulla RA: Serum 1,5-anhydroglucitol (Glycomark) levels in children with and without type 1 diabetes mellitus. Pediatr Diabetes. 2007 Aug;8(4):214-9.</reference_text>
<pubmed_id>17659063</pubmed_id>
</reference>
<reference>
<reference_text>del Carmen Crespillo M, Olveira G, de Adana MS, Rojo-Martinez G, Garcia-Aleman J, Olvera P, Soriguer F, Munoz A: Metabolic effects of an enteral nutrition formula for diabetes: comparison with standard formulas in patients with type 1 diabetes. Clin Nutr. 2003 Oct;22(5):483-7.</reference_text>
<pubmed_id>14512036</pubmed_id>
</reference>
<reference>
<reference_text>Stupar J, Vrtovec M, Dolinsek F: Longitudinal hair chromium profiles of elderly subjects with normal glucose tolerance and type 2 diabetes mellitus. Metabolism. 2007 Jan;56(1):94-104.</reference_text>
<pubmed_id>17161231</pubmed_id>
</reference>
<reference>
<reference_text>Liebich HM, Buelow HJ, Kallmayer R: Quantification of endogenous aliphatic alcohols in serum and urine. J Chromatogr. 1982 Apr 30;239:343-9.</reference_text>
<pubmed_id>7096503</pubmed_id>
</reference>
<reference>
<reference_text>Shin CS, Moon BS, Park KS, Kim SY, Park SJ, Chung MH, Lee HK: Serum 8-hydroxy-guanine levels are increased in diabetic patients. Diabetes Care. 2001 Apr;24(4):733-7.</reference_text>
<pubmed_id>11315839</pubmed_id>
</reference>
<reference>
<reference_text>Guevara-Aguirre J, Guevara-Aguirre M, Saavedra J, Bernstein G, Rosenbloom AL: Comparison of oral insulin spray and subcutaneous regular insulin at mealtime in type 1 diabetes. Diabetes Technol Ther. 2007 Aug;9(4):372-6.</reference_text>
<pubmed_id>17705693</pubmed_id>
</reference>
<reference>
<reference_text>Giussi GA, Ballejo G, Benedetti WL: Estriol serum levels, neonatal vitality and stromal villous edema in diabetic pregnancies. Acta Diabetol Lat. 1979 Apr-Jun;16(2):105-10.</reference_text>
<pubmed_id>484160</pubmed_id>
</reference>
<reference>
<reference_text>Ostlund RE Jr, McGill JB, Herskowitz I, Kipnis DM, Santiago JV, Sherman WR: D-chiro-inositol metabolism in diabetes mellitus. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):9988-92.</reference_text>
<pubmed_id>8234346</pubmed_id>
</reference>
<reference>
<reference_text>Mine S, Okada Y, Kawahara C, Tabata T, Tanaka Y: Serum hyaluronan concentration as a marker of angiopathy in patients with diabetes mellitus. Endocr J. 2006 Dec;53(6):761-6. Epub 2006 Sep 12.</reference_text>
<pubmed_id>16966827</pubmed_id>
</reference>
<reference>
<reference_text>Khuhawar MY, Zardari LA, Laghari AJ: Capillary gas chromatographic determination of methylglyoxal from serum of diabetic patients by precolumn derivatization with 1,2-diamonopropane. J Chromatogr B Analyt Technol Biomed Life Sci. 2008 Sep 15;873(1):15-9. doi: 10.1016/j.jchromb.2008.04.048. Epub 2008 May 17.</reference_text>
<pubmed_id>18760976</pubmed_id>
</reference>
<reference>
<reference_text>World Health Organisation Department of Noncommunicable Disease Surveillance (1999). "Definition, Diagnosis and Classification of Diabetes Mellitus and its Complications"</reference_text>
<pubmed_id/>
</reference>
</references>
</disease>
<disease>
<name>Kidney disease</name>
<omim_id/>
<references>
<reference>
<reference_text>Galley HF, Le Cras AE, Yassen K, Grant IS, Webster NR: Circulating tetrahydrobiopterin concentrations in patients with septic shock. Br J Anaesth. 2001 Apr;86(4):578-80.</reference_text>
<pubmed_id>11573638</pubmed_id>
</reference>
<reference>
<reference_text>Yokoyama K, Tajima M, Yoshida H, Nakayama M, Tokutome G, Sakagami H, Hosoya T: Plasma pteridine concentrations in patients with chronic renal failure. Nephrol Dial Transplant. 2002 Jun;17(6):1032-6.</reference_text>
<pubmed_id>12032193</pubmed_id>
</reference>
<reference>
<reference_text>McGregor DO, Dellow WJ, Lever M, George PM, Robson RA, Chambers ST: Dimethylglycine accumulates in uremia and predicts elevated plasma homocysteine concentrations. Kidney Int. 2001 Jun;59(6):2267-72.</reference_text>
<pubmed_id>11380830</pubmed_id>
</reference>
<reference>
<reference_text>Ehrenpreis ED, Salvino M, Craig RM: Improving the serum D-xylose test for the identification of patients with small intestinal malabsorption. J Clin Gastroenterol. 2001 Jul;33(1):36-40.</reference_text>
<pubmed_id>11418788</pubmed_id>
</reference>
<reference>
<reference_text>Niwa T, Takeda N, Yoshizumi H: RNA metabolism in uremic patients: accumulation of modified ribonucleosides in uremic serum. Technical note. Kidney Int. 1998 Jun;53(6):1801-6.</reference_text>
<pubmed_id>9607216</pubmed_id>
</reference>
<reference>
<reference_text>Jankowski J, van der Giet M, Jankowski V, Schmidt S, Hemeier M, Mahn B, Giebing G, Tolle M, Luftmann H, Schluter H, Zidek W, Tepel M: Increased plasma phenylacetic acid in patients with end-stage renal failure inhibits iNOS expression. J Clin Invest. 2003 Jul;112(2):256-64.</reference_text>
<pubmed_id>12865413</pubmed_id>
</reference>
<reference>
<reference_text>Gill DS, Fonseca VA, Barradas MA, Balliod R, Moorhead JF, Dandona P: Plasma histamine in patients with chronic renal failure and nephrotic syndrome. J Clin Pathol. 1991 Mar;44(3):243-5.</reference_text>
<pubmed_id>2013627</pubmed_id>
</reference>
<reference>
<reference_text>Fleck C, Schweitzer F, Karge E, Busch M, Stein G: Serum concentrations of asymmetric (ADMA) and symmetric (SDMA) dimethylarginine in patients with chronic kidney diseases. Clin Chim Acta. 2003 Oct;336(1-2):1-12.</reference_text>
<pubmed_id>14500028</pubmed_id>
</reference>
<reference>
<reference_text>Bain MA, Faull R, Fornasini G, Milne RW, Evans AM: Accumulation of trimethylamine and trimethylamine-N-oxide in end-stage renal disease patients undergoing haemodialysis. Nephrol Dial Transplant. 2006 May;21(5):1300-4. Epub 2006 Jan 9.</reference_text>
<pubmed_id>16401621</pubmed_id>
</reference>
<reference>
<reference_text>Teerlink T, Hennekes MW, Mulder C, Brulez HF: Determination of dimethylamine in biological samples by high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl. 1997 Apr 11;691(2):269-76.</reference_text>
<pubmed_id>9174262</pubmed_id>
</reference>
<reference>
<reference_text>Takagi T, Chung TG, Saito A: Determination of polyamines in hydrolysates of uremic plasma by high-performance cation-exchange column chromatography. J Chromatogr. 1983 Feb 11;272(2):279-85.</reference_text>
<pubmed_id>6833425</pubmed_id>
</reference>
<reference>
<reference_text>Burke RA, Moberly JB, Patel H, Shockley TR, Martis L: Maltose and isomaltose in uremic plasma following icodextrin administration. Adv Perit Dial. 1998;14:120-3.</reference_text>
<pubmed_id>10649708</pubmed_id>
</reference>
<reference>
<reference_text>Liebich HM, Woll J: Volatile substances in blood serum: profile analysis and quantitative determination. J Chromatogr. 1977 Nov 11;142:505-16.</reference_text>
<pubmed_id>914932</pubmed_id>
</reference>
<reference>
<reference_text>Raj DS, Ouwendyk M, Francoeur R, Pierratos A: Plasma amino acid profile on nocturnal hemodialysis. Blood Purif. 2000;18(2):97-102.</reference_text>
<pubmed_id>10838467</pubmed_id>
</reference>
<reference>
<reference_text>Paniagua R, Claure R, Amato D, Flores E, Perez A, Exaire E: Effects of oral administration of zinc and diiodohydroxyquinolein on plasma zinc levels of uremic patients. Nephron. 1995;69(2):147-50.</reference_text>
<pubmed_id>7723896</pubmed_id>
</reference>
<reference>
<reference_text>Chuang CK, Lin SP, Chen HH, Chen YC, Wang TJ, Shieh WH, Wu CJ: Plasma free amino acids and their metabolites in Taiwanese patients on hemodialysis and continuous ambulatory peritoneal dialysis. Clin Chim Acta. 2006 Feb;364(1-2):209-16. Epub 2005 Aug 8.</reference_text>
<pubmed_id>16087168</pubmed_id>
</reference>
<reference>
<reference_text>Butscheid M, Schafer C, Brenner S, Alscher D, Murdter T, Niwa T, Frischmann M, Pischetsrieder M, Klotz U: Unchanged serum levels of advanced glycation endproducts in patients with liver disease. Naunyn Schmiedebergs Arch Pharmacol. 2007 Aug;375(6):401-6. Epub 2007 Jun 15.</reference_text>
<pubmed_id>17571253</pubmed_id>
</reference>
<reference>
<reference_text>Stenvinkel P, Rodriguez-Ayala E, Massy ZA, Qureshi AR, Barany P, Fellstrom B, Heimburger O, Lindholm B, Alvestrand A: Statin treatment and diabetes affect myeloperoxidase activity in maintenance hemodialysis patients. Clin J Am Soc Nephrol. 2006 Mar;1(2):281-7. Epub 2006 Feb 1.</reference_text>
<pubmed_id>17699218</pubmed_id>
</reference>
<reference>
<reference_text>Bain MA, Faull R, Milne RW, Evans AM: Oral L-carnitine: metabolite formation and hemodialysis. Curr Drug Metab. 2006 Oct;7(7):811-6.</reference_text>
<pubmed_id>17073580</pubmed_id>
</reference>
<reference>
<reference_text>Nieren- und Hochdruckkrankheiten (1978), 7(2), 62-74 (translated from German Kidney and Hypertension). </reference_text>
<pubmed_id/>
</reference>
</references>
</disease>
<disease>
<name>Obesity</name>
<omim_id>601665</omim_id>
<references>
<reference>
<reference_text>Tuma P, Samcova E, Balinova P: Determination of 3-methylhistidine and 1-methylhistidine in untreated urine samples by capillary electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci. 2005 Jul 5;821(1):53-9.</reference_text>
<pubmed_id>15899597</pubmed_id>
</reference>
<reference>
<reference_text>Serlie MJ, Meijer AJ, Groener JE, Duran M, Endert E, Fliers E, Aerts JM, Sauerwein HP: Short-term manipulation of plasma free fatty acids does not change skeletal muscle concentrations of ceramide and glucosylceramide in lean and overweight subjects. J Clin Endocrinol Metab. 2007 Apr;92(4):1524-9. Epub 2007 Jan 30.</reference_text>
<pubmed_id>17264178</pubmed_id>
</reference>
<reference>
<reference_text>Vice E, Privette JD, Hickner RC, Barakat HA: Ketone body metabolism in lean and obese women. Metabolism. 2005 Nov;54(11):1542-5.</reference_text>
<pubmed_id>16253646</pubmed_id>
</reference>
<reference>
<reference_text>Brind J, Strain G, Miller L, Zumoff B, Vogelman J, Orentreich N: Obese men have elevated plasma levels of estrone sulfate. Int J Obes. 1990 Jun;14(6):483-6.</reference_text>
<pubmed_id>2401584</pubmed_id>
</reference>
<reference>
<reference_text>Driskell JA, Chrisley BM, Reynolds LK, Moak SW: Plasma B6 vitamer and plasma and urinary 4-pyridoxic acid concentrations of middle-aged obese black women. J Chromatogr. 1991 Aug 23;568(2):333-40.</reference_text>
<pubmed_id>1783639</pubmed_id>
</reference>
</references>
</disease>
</diseases>
<drugbank_id></drugbank_id>
<drugbank_metabolite_id/>
<phenol_explorer_compound_id/>
<phenol_explorer_metabolite_id/>
<foodb_id>FDB012119</foodb_id>
<knapsack_id></knapsack_id>
<chemspider_id>83153</chemspider_id>
<kegg_id>C01152</kegg_id>
<biocyc_id>CPD-1823</biocyc_id>
<bigg_id></bigg_id>
<wikipidia></wikipidia>
<nugowiki>1</nugowiki>
<metagene></metagene>
<metlin_id>3741</metlin_id>
<pubchem_compound_id>92105</pubchem_compound_id>
<het_id>HIC</het_id>
<chebi_id>50599</chebi_id>
<synthesis_reference>Jain, Rahul; Cohen, Louis A. Regiospecific alkylation of histidine and histamine at N-1 (t).Tetrahedron (1996), 52(15), 5363-70.</synthesis_reference>
<general_references>
<reference>
<reference_text>Colombani PC, Kovacs E, Frey-Rindova P, Frey W, Langhans W, Arnold M, Wenk C: Metabolic effects of a protein-supplemented carbohydrate drink in marathon runners. Int J Sport Nutr. 1999 Jun;9(2):181-201.</reference_text>
<pubmed_id>10362454</pubmed_id>
</reference>
<reference>
<reference_text>Nicholson JK, Foxall PJ, Spraul M, Farrant RD, Lindon JC: 750 MHz 1H and 1H-13C NMR spectroscopy of human blood plasma. Anal Chem. 1995 Mar 1;67(5):793-811.</reference_text>
<pubmed_id>7762816</pubmed_id>
</reference>
<reference>
<reference_text>Myint T, Fraser GE, Lindsted KD, Knutsen SF, Hubbard RW, Bennett HW: Urinary 1-methylhistidine is a marker of meat consumption in Black and in White California Seventh-day Adventists. Am J Epidemiol. 2000 Oct 15;152(8):752-5.</reference_text>
<pubmed_id>11052553</pubmed_id>
</reference>
<reference>
<reference_text>Giesecke K, Magnusson I, Ahlberg M, Hagenfeldt L, Wahren J: Protein and amino acid metabolism during early starvation as reflected by excretion of urea and methylhistidines. Metabolism. 1989 Dec;38(12):1196-200.</reference_text>
<pubmed_id>2593832</pubmed_id>
</reference>
<reference>
<reference_text>Vranic L, Granic P, Rajic Z: Basic amino acid in the pathogenesis of caries. Acta Stomatol Croat. 1991;25(2):71-6.</reference_text>
<pubmed_id>1819935</pubmed_id>
</reference>
<reference>
<reference_text>Sjolin J, Stjernstrom H, Henneberg S, Hambraeus L, Friman G: Evaluation of urinary 3-methylhistidine excretion in infection by measurements of 1-methylhistidine and the creatinine ratios. Am J Clin Nutr. 1989 Jan;49(1):62-70.</reference_text>
<pubmed_id>2912013</pubmed_id>
</reference>
<reference>
<reference_text>COCKS DH, DENNIS PO, NELSON TH: ISOLATION OF 3-METHYL HISTIDINE FROM WHALEMEAT EXTRACT AND THE PREPARATION OF SOME DERIVATIVES. Nature. 1964 Apr 11;202:184-5.</reference_text>
<pubmed_id>14156296</pubmed_id>
</reference>
<reference>
<reference_text>Dohm GL, Williams RT, Kasperek GJ, van Rij AM: Increased excretion of urea and N tau -methylhistidine by rats and humans after a bout of exercise. J Appl Physiol Respir Environ Exerc Physiol. 1982 Jan;52(1):27-33.</reference_text>
<pubmed_id>7061274</pubmed_id>
</reference>
<reference>
<reference_text>Garlick PJ, McNurlan MA, Bark T, Lang CH, Gelato MC: Hormonal regulation of protein metabolism in relation to nutrition and disease. J Nutr. 1998 Feb;128(2 Suppl):356S-359S.</reference_text>
<pubmed_id>9478024</pubmed_id>
</reference>
<reference>
<reference_text>Tuma P, Samcova E, Balinova P: Determination of 3-methylhistidine and 1-methylhistidine in untreated urine samples by capillary electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci. 2005 Jul 5;821(1):53-9.</reference_text>
<pubmed_id>15899597</pubmed_id>
</reference>
<reference>
<reference_text>Dunnett M, Harris RC: High-performance liquid chromatographic determination of imidazole dipeptides, histidine, 1-methylhistidine and 3-methylhistidine in equine and camel muscle and individual muscle fibres. J Chromatogr B Biomed Sci Appl. 1997 Jan 10;688(1):47-55.</reference_text>
<pubmed_id>9029312</pubmed_id>
</reference>
<reference>
<reference_text>Betto P, Ricciarello G, Pichini S, Dello Strologo L, Rizzoni G: High-performance liquid chromatography-electrochemical detection of 3-methylhistidine in human urine. J Chromatogr. 1992 Dec 23;584(2):256-60.</reference_text>
<pubmed_id>1484110</pubmed_id>
</reference>
</general_references>
<protein_associations>
<protein>
<protein_accession>HMDBP00473</protein_accession>
<name>Beta-Ala-His dipeptidase</name>
<uniprot_id>Q96KN2</uniprot_id>
<gene_name>CNDP1</gene_name>
<protein_type>Unknown</protein_type>
</protein>
<protein>
<protein_accession>HMDBP00474</protein_accession>
<name>Protein arginine N-methyltransferase 3</name>
<uniprot_id>O60678</uniprot_id>
<gene_name>PRMT3</gene_name>
<protein_type>Unknown</protein_type>
</protein>
</protein_associations>
</metabolite>
</xml_split:root>
<?xml version="1.0" encoding="UTF-8"?>
<xml_split:root xmlns:xml_split="http://xmltwig.com/xml_split">
<metabolite>
<version>4.0</version>
<creation_date>2005-11-16 15:48:42 UTC</creation_date>
<update_date>2017-12-20 20:28:32 UTC</update_date>
<accession>HMDB0000002</accession>
<status>quantified</status>
<secondary_accessions>
<accession>HMDB00002</accession>
</secondary_accessions>
<name>1,3-Diaminopropane</name>
<description>1,3-Diaminopropane is a stable, flammable and highly hydroscopic fluid. It is a polyamine that is normally quite toxic if swallowed, inhaled or absorbed through the skin. It is a catabolic byproduct of spermidine. It is also a precursor in the enzymatic synthesis of beta-alanine. 1, 3-Diaminopropane is involved in the arginine/proline metabolic pathways and the beta-alanine metabolic pathway.</description>
<synonyms>
<synonym>1,3-Propanediamine</synonym>
<synonym>1,3-Propylenediamine</synonym>
<synonym>Propane-1,3-diamine</synonym>
<synonym>tn</synonym>
<synonym>1,3-diamino-N-Propane</synonym>
<synonym>1,3-Trimethylenediamine</synonym>
<synonym>3-Aminopropylamine</synonym>
<synonym>a,W-Propanediamine</synonym>
<synonym>Trimethylenediamine</synonym>
<synonym>Trimethylenediamine hydrochloride</synonym>
<synonym>Trimethylenediamine dihydrochloride</synonym>
<synonym>1,3-Diaminepropane</synonym>
</synonyms>
<chemical_formula>C3H10N2</chemical_formula>
<average_molecular_weight>74.1249</average_molecular_weight>
<monisotopic_molecular_weight>74.08439833</monisotopic_molecular_weight>
<iupac_name>propane-1,3-diamine</iupac_name>
<traditional_iupac>α,ω-propanediamine</traditional_iupac>
<cas_registry_number>109-76-2</cas_registry_number>
<smiles>NCCCN</smiles>
<inchi>InChI=1S/C3H10N2/c4-2-1-3-5/h1-5H2</inchi>
<inchikey>XFNJVJPLKCPIBV-UHFFFAOYSA-N</inchikey>
<taxonomy>
<description>This compound belongs to the class of organic compounds known as monoalkylamines. These are organic compounds containing an primary aliphatic amine group.</description>
<direct_parent>Monoalkylamines</direct_parent>
<kingdom>Organic compounds</kingdom>
<super_class>Organic nitrogen compounds</super_class>
<class>Organonitrogen compounds</class>
<sub_class>Amines</sub_class>
<molecular_framework>Aliphatic acyclic compounds</molecular_framework>
<alternative_parents>
<alternative_parent>Hydrocarbon derivatives</alternative_parent>
<alternative_parent>Organopnictogen compounds</alternative_parent>
</alternative_parents>
<substituents>
<substituent>Aliphatic acyclic compound</substituent>
<substituent>Hydrocarbon derivative</substituent>
<substituent>Organopnictogen compound</substituent>
<substituent>Primary aliphatic amine</substituent>
</substituents>
<external_descriptors>
<external_descriptor>a small molecule</external_descriptor>
<external_descriptor>alkane-alpha,omega-diamine</external_descriptor>
</external_descriptors>
</taxonomy>
<ontology>
<root>
<term>Physiological effect</term>
<definition>The effect on an organism physiology, resulting from its exposure to a chemical.</definition>
<parent_id/>
<level>1</level>
<type>parent</type>
<descendants>
<descendant>
<term>Health effect</term>
<definition>A health condition or observation associated with a stimuli or with a biological activity of a chemical.</definition>
<parent_id>7693</parent_id>
<level>2</level>
<type>parent</type>
<descendants>
<descendant>
<term>Health condition</term>
<definition>A health effect that consists on short or long-term disease, condition, disorder, syndrome or constant abnormality.</definition>
<parent_id>7694</parent_id>
<level>3</level>
<type>parent</type>
<descendants>
<descendant>
<term>Cancer</term>
<definition>A group of disorders characterized by the presense of malignant neoplasm.</definition>
<parent_id>7695</parent_id>
<level>4</level>
<type>parent</type>
<descendants>
<descendant>
<term>Leukemia</term>
<definition>A cancer that affects the blood or bone marrow characterized by an abnormal proliferation of blood cells. (do).</definition>
<parent_id>7696</parent_id>
<level>5</level>
<type>child</type>
</descendant>
</descendants>
</descendant>
</descendants>
</descendant>
</descendants>
</descendant>
</descendants>
</root>
<root>
<term>Disposition</term>
<definition>A concept that describes the origin of a chemical, its location within an organism, or its route of exposure.</definition>
<parent_id/>
<level>1</level>
<type>parent</type>
<descendants>
<descendant>
<term>Route of exposure</term>
<definition>A mean by which a chemical agent comes in contact with an organism, either under intended or unintended circumstances.</definition>
<parent_id>7724</parent_id>
<level>2</level>
<type>parent</type>
<descendants>
<descendant>
<term>Enteral</term>
<definition>Chemical exposure via the alimentary canal (mouth to anus).</definition>
<parent_id>7743</parent_id>
<level>3</level>
<type>parent</type>
<descendants>
<descendant>
<term>Ingestion</term>
<definition>Chemical exposure facilitated by entry through the mouth.</definition>
<parent_id>7744</parent_id>
<level>4</level>
<type>child</type>
</descendant>
</descendants>
</descendant>
</descendants>
</descendant>
<descendant>
<term>Source</term>
<definition>Natural or synthetic origin of a chemical.</definition>
<parent_id>7724</parent_id>
<level>2</level>
<type>parent</type>
<descendants>
<descendant>
<term>Endogenous</term>
<definition/>
<parent_id>7735</parent_id>
<level>3</level>
<type>child</type>
</descendant>
<descendant>
<term>Food</term>
<definition/>
<parent_id>7735</parent_id>
<level>3</level>
<type>child</type>
</descendant>
<descendant>
<term>Biological</term>
<definition>A living organism (species or a higher taxonomy rank), in which a chemical can be found.</definition>
<parent_id>7735</parent_id>
<level>3</level>
<type>parent</type>
<descendants>
<descendant>
<term>Plant</term>
<definition>A living organism belonging to the kingdom plantea. typically, it grows in a permanent site, absorbs water and inorganic substances through its roots, and synthesizes nutrients in its leaves by photosynthesis using the green pigment chlorophyll. examples incude trees, shrubs, herbs, grasses, ferns, and mosses.</definition>
<parent_id>7736</parent_id>
<level>4</level>
<type>parent</type>
<descendants>
<descendant>
<term>Poaceae</term>
<definition/>
<parent_id>7738</parent_id>
<level>5</level>
<type>child</type>
</descendant>
<descendant>
<term>Fabaceae</term>
<definition/>
<parent_id>7738</parent_id>
<level>5</level>
<type>child</type>
</descendant>
<descendant>
<term>Glycine max</term>
<definition/>
<parent_id>7738</parent_id>
<level>5</level>
<type>child</type>
</descendant>
<descendant>
<term>Cucurbitaceae</term>
<definition/>
<parent_id>7738</parent_id>
<level>5</level>
<type>child</type>
</descendant>
<descendant>
<term>Theobroma cacao</term>
<definition/>
<parent_id>7738</parent_id>
<level>5</level>
<type>child</type>
</descendant>
</descendants>
</descendant>
<descendant>
<term>Animal</term>
<definition>A living organism belonging to the kingdom animalia. it feeds on organic matter, typically having specialized sense organs and nervous system and able to respond rapidly to stimuli.</definition>
<parent_id>7736</parent_id>
<level>4</level>
<type>child</type>
</descendant>
</descendants>
</descendant>
</descendants>
</descendant>
<descendant>
<term>Biological location</term>
<definition>The physiological origin within an organism, including anatomical compnents, biofluids and excreta.</definition>
<parent_id>7724</parent_id>
<level>2</level>
<type>parent</type>
<descendants>
<descendant>
<term>Biofluid and excreta</term>
<definition>A liquid, semi-solid or solid material originating in the body.</definition>
<parent_id>7725</parent_id>
<level>3</level>
<type>parent</type>
<descendants>
<descendant>
<term>Feces</term>
<definition>The material discharged from the bowel during defecation. It consists of undigested food, intestinal mucus, epithelial cells, and bacteria.</definition>
<parent_id>7731</parent_id>
<level>4</level>
<type>child</type>
</descendant>
<descendant>
<term>Urine</term>
<definition>Excretion in liquid state processed by the kidney.</definition>
<parent_id>7731</parent_id>
<level>4</level>
<type>child</type>
</descendant>
<descendant>
<term>Blood</term>
<definition>A liquid tissue with the primary function of transporting oxygen and carbon dioxide (nci). it supplies the tissues with nutrients, removes waste products, and contains various components of the immune system defending the body against infection.</definition>
<parent_id>7731</parent_id>
<level>4</level>
<type>child</type>
</descendant>
</descendants>
</descendant>
<descendant>
<term>Subcellular</term>
<definition>An anatomical organizational level including a component within a biological cell .</definition>
<parent_id>7725</parent_id>
<level>3</level>
<type>parent</type>
<descendants>
<descendant>
<term>Cytoplasm</term>
<definition>The portion of the cell contained within the plasma membrane but excluding the nucleus.</definition>
<parent_id>7730</parent_id>
<level>4</level>
<type>child</type>
</descendant>
</descendants>
</descendant>
</descendants>
</descendant>
</descendants>
</root>
<root>
<term>Process</term>
<definition>Biological or chemical events, or a series thereof, leading to a known function or end-product.</definition>
<parent_id/>
<level>1</level>
<type>parent</type>
<descendants>
<descendant>
<term>Naturally occurring process</term>
<definition>Naturally-occurring molecular events or a series thereof, leading to a known function or end-product.</definition>
<parent_id>7659</parent_id>
<level>2</level>
<type>parent</type>
<descendants>
<descendant>
<term>Biological process</term>
<definition>Biological or chemical events or a series thereof, leading to a known function or end-product within an organism.</definition>
<parent_id>7660</parent_id>
<level>3</level>
<type>parent</type>
<descendants>
<descendant>
<term>Biochemical pathway</term>
<definition>A linked series of chemical reactions that occur in a defined order within or between organism cells, and lead to a known function or end product.</definition>
<parent_id>7661</parent_id>
<level>4</level>
<type>parent</type>
<descendants>
<descendant>
<term>Beta-Alanine Metabolism</term>
<definition> these dipeptides are found in protein rich foods such as chicken, beef, pork and fish. beta-alanine can also be formed in the liver from the catabolism of pyrimidine nucleotides which are broken down into uracil and dihydrouracil and then metabolized into beta-alanine and beta-aminoisobutyrate.</definition>
<parent_id>7662</parent_id>
<level>5</level>
<type>child</type>
</descendant>
</descendants>
</descendant>
</descendants>
</descendant>
</descendants>
</descendant>
</descendants>
</root>
</ontology>
<state>Liquid</state>
<experimental_properties>
<property>
<kind>logp</kind>
<value>-1.43</value>
<source>HANSCH,C ET AL. (1995)</source>
</property>
<property>
<kind>melting_point</kind>
<value>-12 °C</value>
<source></source>
</property>
</experimental_properties>
<predicted_properties>
<property>
<kind>logp</kind>
<value>-1.41</value>
<source>ALOGPS</source>
</property>
<property>
<kind>logs</kind>
<value>0.77</value>
<source>ALOGPS</source>
</property>
<property>
<kind>solubility</kind>
<value>437 g/L</value>
<source>ALOGPS</source>
</property>
<property>
<kind>logp</kind>
<value>-1.4</value>
<source>ChemAxon</source>
</property>
<property>
<kind>pka_strongest_basic</kind>
<value>10.17</value>
<source>ChemAxon</source>
</property>
<property>
<kind>iupac</kind>
<value>propane-1,3-diamine</value>
<source>ChemAxon</source>
</property>
<property>
<kind>average_mass</kind>
<value>74.1249</value>
<source>ChemAxon</source>
</property>
<property>
<kind>mono_mass</kind>
<value>74.08439833</value>
<source>ChemAxon</source>
</property>
<property>
<kind>smiles</kind>
<value>NCCCN</value>
<source>ChemAxon</source>
</property>
<property>
<kind>formula</kind>
<value>C3H10N2</value>
<source>ChemAxon</source>
</property>
<property>
<kind>inchi</kind>
<value>InChI=1S/C3H10N2/c4-2-1-3-5/h1-5H2</value>
<source>ChemAxon</source>
</property>
<property>
<kind>inchikey</kind>
<value>XFNJVJPLKCPIBV-UHFFFAOYSA-N</value>
<source>ChemAxon</source>
</property>
<property>
<kind>polar_surface_area</kind>
<value>52.04</value>
<source>ChemAxon</source>
</property>
<property>
<kind>refractivity</kind>
<value>22.73</value>
<source>ChemAxon</source>
</property>
<property>
<kind>polarizability</kind>
<value>9.06</value>
<source>ChemAxon</source>
</property>
<property>
<kind>rotatable_bond_count</kind>
<value>2</value>
<source>ChemAxon</source>
</property>
<property>
<kind>acceptor_count</kind>
<value>2</value>
<source>ChemAxon</source>
</property>
<property>
<kind>donor_count</kind>
<value>2</value>
<source>ChemAxon</source>
</property>
<property>
<kind>physiological_charge</kind>
<value>2</value>
<source>ChemAxon</source>
</property>
<property>
<kind>formal_charge</kind>
<value>0</value>
<source>ChemAxon</source>
</property>
<property>
<kind>number_of_rings</kind>
<value>0</value>
<source>ChemAxon</source>
</property>
<property>
<kind>bioavailability</kind>
<value>1</value>
<source>ChemAxon</source>
</property>
<property>
<kind>rule_of_five</kind>
<value>Yes</value>
<source>ChemAxon</source>
</property>
<property>
<kind>ghose_filter</kind>
<value>Yes</value>
<source>ChemAxon</source>
</property>
<property>
<kind>veber_rule</kind>
<value>Yes</value>
<source>ChemAxon</source>
</property>
<property>
<kind>mddr_like_rule</kind>
<value>Yes</value>
<source>ChemAxon</source>
</property>
</predicted_properties>
<spectra>
<spectrum>
<type>Specdb::CMs</type>
<spectrum_id>272</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::CMs</type>
<spectrum_id>273</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::CMs</type>
<spectrum_id>274</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::CMs</type>
<spectrum_id>275</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::CMs</type>
<spectrum_id>1311</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::CMs</type>
<spectrum_id>3286</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::CMs</type>
<spectrum_id>27666</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::CMs</type>
<spectrum_id>28730</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::CMs</type>
<spectrum_id>28772</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::CMs</type>
<spectrum_id>30163</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::CMs</type>
<spectrum_id>30249</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::CMs</type>
<spectrum_id>30410</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::CMs</type>
<spectrum_id>30742</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::CMs</type>
<spectrum_id>30942</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::CMs</type>
<spectrum_id>32035</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::CMs</type>
<spectrum_id>32036</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::EiMs</type>
<spectrum_id>1533</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::NmrOneD</type>
<spectrum_id>1023</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::NmrOneD</type>
<spectrum_id>3789</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::NmrOneD</type>
<spectrum_id>4048</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::NmrOneD</type>
<spectrum_id>4740</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::MsMs</type>
<spectrum_id>4</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::MsMs</type>
<spectrum_id>5</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::MsMs</type>
<spectrum_id>6</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::MsMs</type>
<spectrum_id>2508</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::MsMs</type>
<spectrum_id>2509</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::MsMs</type>
<spectrum_id>2510</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::MsMs</type>
<spectrum_id>2511</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::MsMs</type>
<spectrum_id>2512</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::MsMs</type>
<spectrum_id>2513</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::MsMs</type>
<spectrum_id>2514</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::MsMs</type>
<spectrum_id>2515</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::MsMs</type>
<spectrum_id>20192</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::MsMs</type>
<spectrum_id>20193</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::MsMs</type>
<spectrum_id>20194</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::MsMs</type>
<spectrum_id>20441</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::MsMs</type>
<spectrum_id>20442</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::MsMs</type>
<spectrum_id>20443</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::MsMs</type>
<spectrum_id>21743</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::MsMs</type>
<spectrum_id>21744</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::MsMs</type>
<spectrum_id>21745</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::MsMs</type>
<spectrum_id>21992</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::MsMs</type>
<spectrum_id>21993</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::MsMs</type>
<spectrum_id>21994</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::MsMs</type>
<spectrum_id>445975</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::MsMs</type>
<spectrum_id>445976</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::NmrTwoD</type>
<spectrum_id>916</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::NmrTwoD</type>
<spectrum_id>934</spectrum_id>
</spectrum>
</spectra>
<cellular_locations>
<cellular>Cytoplasm</cellular>
</cellular_locations>
<biospecimen_locations>
<biospecimen>Blood</biospecimen>
<biospecimen>Feces</biospecimen>
<biospecimen>Urine</biospecimen>
</biospecimen_locations>
<tissue_locations>
</tissue_locations>
<pathways>
<pathway>
<name>Beta-Alanine Metabolism</name>
<smpdb_id>SMP00007</smpdb_id>
<kegg_map_id>map00410</kegg_map_id>
</pathway>
<pathway>
<name>Carnosinuria, carnosinemia</name>
<smpdb_id>SMP00493</smpdb_id>
<kegg_map_id/>
</pathway>
<pathway>
<name>GABA-Transaminase Deficiency</name>
<smpdb_id>SMP00351</smpdb_id>
<kegg_map_id/>
</pathway>
<pathway>
<name>Ureidopropionase Deficiency</name>
<smpdb_id>SMP00492</smpdb_id>
<kegg_map_id/>
</pathway>
</pathways>
<normal_concentrations>
<concentration>
<biospecimen>Blood</biospecimen>
<concentration_value>0.04 +/- 0.03</concentration_value>
<concentration_units>uM</concentration_units>
<subject_age>Adult (&gt;18 years old)</subject_age>
<subject_sex>Female</subject_sex>
<subject_condition>Normal</subject_condition>
<references>
<reference>
<reference_text>Byun JA, Lee SH, Jung BH, Choi MH, Moon MH, Chung BC: Analysis of polyamines as carbamoyl derivatives in urine and serum by liquid chromatography-tandem mass spectrometry. Biomed Chromatogr. 2008 Jan;22(1):73-80.</reference_text>
<pubmed_id>17668437</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Urine</biospecimen>
<concentration_value>0.16 (0.02-0.69)</concentration_value>
<concentration_units>umol/mmol creatinine</concentration_units>
<subject_age>Adult (&gt;18 years old)</subject_age>
<subject_sex>Both</subject_sex>
<subject_condition>Normal</subject_condition>
<references>
<reference>
<reference_text>van den Berg GA, Muskiet FA, Kingma AW, van der Slik W, Halie MR: Simultaneous gas-chromatographic determination of free and acetyl-conjugated polyamines in urine. Clin Chem. 1986 Oct;32(10):1930-7.</reference_text>
<pubmed_id>3757213</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Urine</biospecimen>
<concentration_value>2.55 (0.18-5.85)</concentration_value>
<concentration_units>umol/mmol creatinine</concentration_units>
<subject_age>Adult (&gt;18 years old)</subject_age>
<subject_sex>Both</subject_sex>
<subject_condition>Normal</subject_condition>
<references>
<reference>
<reference_text>Lee SH, Suh JW, Chung BC, Kim SO: Polyamine profiles in the urine of patients with leukemia. Cancer Lett. 1998 Jan 9;122(1-2):1-8.</reference_text>
<pubmed_id>9464484</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Urine</biospecimen>
<concentration_value>0.015</concentration_value>
<concentration_units>umol/mmol creatinine</concentration_units>
<subject_age>Adult (&gt;18 years old)</subject_age>
<subject_sex>Both</subject_sex>
<subject_condition>Normal</subject_condition>
<references>
<reference>
<reference_text>Guo K, Li L: Differential 12C-/13C-isotope dansylation labeling and fast liquid chromatography/mass spectrometry for absolute and relative quantification of the metabolome. Anal Chem. 2009 May 15;81(10):3919-32. doi: 10.1021/ac900166a.</reference_text>
<pubmed_id>19309105</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Urine</biospecimen>
<concentration_value>1.2</concentration_value>
<concentration_units>umol/mmol creatinine</concentration_units>
<subject_age>Adult (&gt;18 years old)</subject_age>
<subject_sex>Both</subject_sex>
<subject_condition>Normal</subject_condition>
<comment>urine by NMR</comment>
<references>
<reference>
<reference_text>Bouatra S, Aziat F, Mandal R, Guo AC, Wilson MR, Knox C, Bjorndahl TC, Krishnamurthy R, Saleem F, Liu P, Dame ZT, Poelzer J, Huynh J, Yallou FS, Psychogios N, Dong E, Bogumil R, Roehring C, Wishart DS: The human urine metabolome. PLoS One. 2013 Sep 4;8(9):e73076. doi: 10.1371/journal.pone.0073076. eCollection 2013.</reference_text>
<pubmed_id>24023812</pubmed_id>
</reference>
</references>
</concentration>
</normal_concentrations>
<abnormal_concentrations>
<concentration>
<biospecimen>Blood</biospecimen>
<concentration_value>0.13 +/- 0.13</concentration_value>
<concentration_units>uM</concentration_units>
<patient_age>Adult (&gt;18 years old)</patient_age>
<patient_sex>Female</patient_sex>
<patient_information>Breast cancer </patient_information>
<references>
<reference>
<reference_text>Byun JA, Lee SH, Jung BH, Choi MH, Moon MH, Chung BC: Analysis of polyamines as carbamoyl derivatives in urine and serum by liquid chromatography-tandem mass spectrometry. Biomed Chromatogr. 2008 Jan;22(1):73-80.</reference_text>
<pubmed_id>17668437</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Feces</biospecimen>
<concentration_value/>
<concentration_units/>
<patient_age>Adult (&gt;18 years old)</patient_age>
<patient_sex>Both</patient_sex>
<patient_information>Colorectal Cancer</patient_information>
<references>
<reference>
<reference_text>Brown DG, Rao S, Weir TL, O'Malia J, Bazan M, Brown RJ, Ryan EP: Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool. Cancer Metab. 2016 Jun 6;4:11. doi: 10.1186/s40170-016-0151-y. eCollection 2016.</reference_text>
<pubmed_id>27275383</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Urine</biospecimen>
<concentration_value>0.96 (0.12-2.11)</concentration_value>
<concentration_units>umol/mmol creatinine</concentration_units>
<patient_age>Adult (&gt;18 years old)</patient_age>
<patient_sex>Both</patient_sex>
<patient_information>Leukemia</patient_information>
<comment>Initial stage of leukemia
</comment>
<references>
<reference>
<reference_text>Lee SH, Suh JW, Chung BC, Kim SO: Polyamine profiles in the urine of patients with leukemia. Cancer Lett. 1998 Jan 9;122(1-2):1-8.</reference_text>
<pubmed_id>9464484</pubmed_id>
</reference>
</references>
</concentration>
</abnormal_concentrations>
<diseases>
<disease>
<name>Perillyl alcohol administration for cancer treatment</name>
<omim_id/>
<references>
<reference>
<reference_text>Zheng YF, Kong HW, Xiong JH, Lv S, Xu GW: Clinical significance and prognostic value of urinary nucleosides in breast cancer patients. Clin Biochem. 2005 Jan;38(1):24-30.</reference_text>
<pubmed_id>15607313</pubmed_id>
</reference>
<reference>
<reference_text>Byun JA, Lee SH, Jung BH, Choi MH, Moon MH, Chung BC: Analysis of polyamines as carbamoyl derivatives in urine and serum by liquid chromatography-tandem mass spectrometry. Biomed Chromatogr. 2008 Jan;22(1):73-80.</reference_text>
<pubmed_id>17668437</pubmed_id>
</reference>
<reference>
<reference_text>Zhang Z, Chen H, Chan KK, Budd T, Ganapathi R: Gas chromatographic-mass spectrometric analysis of perillyl alcohol and metabolites in plasma. J Chromatogr B Biomed Sci Appl. 1999 May 14;728(1):85-95.</reference_text>
<pubmed_id>10379660</pubmed_id>
</reference>
<reference>
<reference_text>Cauley JA, Zmuda JM, Danielson ME, Ljung BM, Bauer DC, Cummings SR, Kuller LH: Estrogen metabolites and the risk of breast cancer in older women. Epidemiology. 2003 Nov;14(6):740-4.</reference_text>
<pubmed_id>14569192</pubmed_id>
</reference>
<reference>
<reference_text>Grace PB, Mistry NS, Carter MH, Leathem AJ, Teale P: High throughput quantification of phytoestrogens in human urine and serum using liquid chromatography/tandem mass spectrometry (LC-MS/MS). J Chromatogr B Analyt Technol Biomed Life Sci. 2007 Jun 15;853(1-2):138-46. Epub 2007 Mar 18.</reference_text>
<pubmed_id>17403619</pubmed_id>
</reference>
</references>
</disease>
<disease>
<name>Leukemia</name>
<omim_id/>
<references>
<reference>
<reference_text>Lee SH, Suh JW, Chung BC, Kim SO: Polyamine profiles in the urine of patients with leukemia. Cancer Lett. 1998 Jan 9;122(1-2):1-8.</reference_text>
<pubmed_id>9464484</pubmed_id>
</reference>
<reference>
<reference_text>Peng CT, Wu KH, Lan SJ, Tsai JJ, Tsai FJ, Tsai CH: Amino acid concentrations in cerebrospinal fluid in children with acute lymphoblastic leukemia undergoing chemotherapy. Eur J Cancer. 2005 May;41(8):1158-63. Epub 2005 Apr 14.</reference_text>
<pubmed_id>15911239</pubmed_id>
</reference>
<reference>
<reference_text>Curtius HC, Wolfensberger M, Redweik U, Leimbacher W, Maibach RA, Isler W: Mass fragmentography of 5-hydroxytryptophol and 5-methoxytryptophol in human cerebrospinal fluid. J Chromatogr. 1975 Oct 29;112:523-31.</reference_text>
<pubmed_id>1184685</pubmed_id>
</reference>
<reference>
<reference_text>Ishiwata S, Itoh K, Yamaguchi T, Ishida N, Mizugaki M: Comparison of serum and urinary levels of modified nucleoside, 1-methyladenosine, in cancer patients using a monoclonal antibody-based inhibition ELISA. Tohoku J Exp Med. 1995 May;176(1):61-8.</reference_text>
<pubmed_id>7482520</pubmed_id>
</reference>
</references>
</disease>
</diseases>
<drugbank_id></drugbank_id>
<drugbank_metabolite_id/>
<phenol_explorer_compound_id/>
<phenol_explorer_metabolite_id/>
<foodb_id>FDB005274</foodb_id>
<knapsack_id>C00007404</knapsack_id>
<chemspider_id>415</chemspider_id>
<kegg_id>C00986</kegg_id>
<biocyc_id>CPD-313</biocyc_id>
<bigg_id>36543</bigg_id>
<wikipidia></wikipidia>
<nugowiki>2</nugowiki>
<metagene></metagene>
<metlin_id>5081</metlin_id>
<pubchem_compound_id>428</pubchem_compound_id>
<het_id>13D</het_id>
<chebi_id>15725</chebi_id>
<synthesis_reference>Takayanagi, Yasuyuki; Oohinata, Takahiro. Preparation of 1,3-diaminopropane from acrylonitrile and ammonia. Jpn. Kokai Tokkyo Koho (1994), 5 pp.</synthesis_reference>
<general_references>
<reference>
<reference_text>van den Berg GA, Muskiet FA, Kingma AW, van der Slik W, Halie MR: Simultaneous gas-chromatographic determination of free and acetyl-conjugated polyamines in urine. Clin Chem. 1986 Oct;32(10):1930-7.</reference_text>
<pubmed_id>3757213</pubmed_id>
</reference>
<reference>
<reference_text>Kim KR, Paik MJ, Kim JH, Dong SW, Jeong DH: Rapid gas chromatographic profiling and screening of biologically active amines. J Pharm Biomed Anal. 1997 Jun;15(9-10):1309-18.</reference_text>
<pubmed_id>9226558</pubmed_id>
</reference>
<reference>
<reference_text>Bremer HJ, Kohne E: The excretion of diamines in human urine. II. Cadaverine, putrescine, 1,3-diaminopropane, 2,2'-dithiobis(ethylamine) and spermidine in urine of patients with cystinuria and cystinlysinuria. Clin Chim Acta. 1971 May;32(3):407-18.</reference_text>
<pubmed_id>5096953</pubmed_id>
</reference>
<reference>
<reference_text>Fleisher JH, Russell DH: Estimation of urinary diamines and polyamines by thin-layer chromatography. J Chromatogr. 1975 Jul 16;110(2):335-40.</reference_text>
<pubmed_id>1150841</pubmed_id>
</reference>
<reference>
<reference_text>Blackburn P, Peterson CM: Thiol-disulfide interchange between cystine and N-2-mercaptoethyl-1, 3-diaminopropane as a potential treatment for cystinuria. Anal Biochem. 1984 Jan;136(1):31-8.</reference_text>
<pubmed_id>6324613</pubmed_id>
</reference>
<reference>
<reference_text>Aigner-Held R, Campbell RA, Daves GD Jr: Polyamine-pyridoxal Schiff bases in urine. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6652-5.</reference_text>
<pubmed_id>293750</pubmed_id>
</reference>
<reference>
<reference_text>Somayaji VV, Guay V, Peng Z, Sykes TR, Noujaim AA: Synthesis and evaluation of a new bifunctional chelating agent for the preparation of radioimmunoconjugates. Q J Nucl Med. 1995 Dec;39(4):300-10.</reference_text>
<pubmed_id>8624793</pubmed_id>
</reference>
<reference>
<reference_text>van den Berg GA, Schaaf JM, Nagel GT, Teelken AW, Muskiet FA: Determination of polyamines and metabolites in cerebrospinal fluid by isotope dilution mass fragmentography, and a clinical application. Clin Chim Acta. 1987 Jun 15;165(2-3):147-54.</reference_text>
<pubmed_id>3308180</pubmed_id>
</reference>
<reference>
<reference_text>Muskiet FA, van den Berg GA, Kingma AW, Fremouw-Ottevangers DC, Halie MR: Total polyamines and their non-alpha-amino acid metabolites simultaneously determined in urine by capillary gas chromatography, with nitrogen-phosphorus detector; and some clinical applications. Clin Chem. 1984 May;30(5):687-95.</reference_text>
<pubmed_id>6713628</pubmed_id>
</reference>
<reference>
<reference_text>Lee SH, Suh JW, Chung BC, Kim SO: Polyamine profiles in the urine of patients with leukemia. Cancer Lett. 1998 Jan 9;122(1-2):1-8.</reference_text>
<pubmed_id>9464484</pubmed_id>
</reference>
</general_references>
<protein_associations>
<protein>
<protein_accession>HMDBP00217</protein_accession>
<name>Spermine synthase</name>
<uniprot_id>P52788</uniprot_id>
<gene_name>SMS</gene_name>
<protein_type>Enzyme</protein_type>
</protein>
<protein>
<protein_accession>HMDBP00219</protein_accession>
<name>Deoxyhypusine synthase</name>
<uniprot_id>P49366</uniprot_id>
<gene_name>DHPS</gene_name>
<protein_type>Unknown</protein_type>
</protein>
<protein>
<protein_accession>HMDBP00390</protein_accession>
<name>Amiloride-sensitive amine oxidase [copper-containing]</name>
<uniprot_id>P19801</uniprot_id>
<gene_name>ABP1</gene_name>
<protein_type>Unknown</protein_type>
</protein>
<protein>
<protein_accession>HMDBP00393</protein_accession>
<name>Membrane primary amine oxidase</name>
<uniprot_id>Q16853</uniprot_id>
<gene_name>AOC3</gene_name>
<protein_type>Unknown</protein_type>
</protein>
<protein>
<protein_accession>HMDBP00394</protein_accession>
<name>Retina-specific copper amine oxidase</name>
<uniprot_id>O75106</uniprot_id>
<gene_name>AOC2</gene_name>
<protein_type>Unknown</protein_type>
</protein>
<protein>
<protein_accession>HMDBP00420</protein_accession>
<name>S-adenosylmethionine decarboxylase proenzyme</name>
<uniprot_id>P17707</uniprot_id>
<gene_name>AMD1</gene_name>
<protein_type>Unknown</protein_type>
</protein>
<protein>
<protein_accession>HMDBP01034</protein_accession>
<name>Ornithine decarboxylase</name>
<uniprot_id>P11926</uniprot_id>
<gene_name>ODC1</gene_name>
<protein_type>Enzyme</protein_type>
</protein>
</protein_associations>
</metabolite>
</xml_split:root>
<?xml version="1.0" encoding="UTF-8"?>
<xml_split:root xmlns:xml_split="http://xmltwig.com/xml_split">
<metabolite>
<version>4.0</version>
<creation_date>2005-11-16 15:48:42 UTC</creation_date>
<update_date>2018-03-23 02:22:21 UTC</update_date>
<accession>HMDB0000005</accession>
<status>quantified</status>
<secondary_accessions>
<accession>HMDB00005</accession>
<accession>HMDB0006544</accession>
<accession>HMDB06544</accession>
</secondary_accessions>
<name>2-Ketobutyric acid</name>
<description>2-Ketobutyric acid is a substance that is involved in the metabolism of many amino acids (glycine, methionine, valine, leucine, serine, threonine, isoleucine) as well as propanoate metabolism and C-5 branched dibasic acid metabolism. More specifically, alpha-ketobutyric acid is a product of the lysis of cystathionine. It is also one of the degradation products of threonine. It can be converted into propionyl-CoA (and subsequently methylmalonyl CoA, which can be converted into succinyl CoA, a citric acid cycle intermediate), and thus enter the citric acid cycle.</description>
<synonyms>
<synonym>2-Ketobutanoic acid</synonym>
<synonym>2-Oxobutyric acid</synonym>
<synonym>3-Methyl pyruvic acid</synonym>
<synonym>alpha-Ketobutyrate</synonym>
<synonym>alpha-Ketobutyric acid</synonym>
<synonym>alpha-oxo-N-Butyric acid</synonym>
<synonym>2-Ketobutanoate</synonym>
<synonym>2-Ketobutyrate</synonym>
<synonym>2-Oxobutyrate</synonym>
<synonym>3-Methyl pyruvate</synonym>
<synonym>a-Ketobutyrate</synonym>
<synonym>a-Ketobutyric acid</synonym>
<synonym>α-ketobutyrate</synonym>
<synonym>α-ketobutyric acid</synonym>
<synonym>a-oxo-N-Butyrate</synonym>
<synonym>a-oxo-N-Butyric acid</synonym>
<synonym>alpha-oxo-N-Butyrate</synonym>
<synonym>α-oxo-N-butyrate</synonym>
<synonym>α-oxo-N-butyric acid</synonym>
<synonym>2-oxo-Butanoate</synonym>
<synonym>2-oxo-Butanoic acid</synonym>
<synonym>2-oxo-Butyrate</synonym>
<synonym>2-oxo-Butyric acid</synonym>
<synonym>2-oxo-N-Butyrate</synonym>
<synonym>2-oxo-N-Butyric acid</synonym>
<synonym>2-Oxobutanoate</synonym>
<synonym>2-Oxobutanoic acid</synonym>
<synonym>3-Methylpyruvate</synonym>
<synonym>3-Methylpyruvic acid</synonym>
<synonym>a-keto-N-Butyrate</synonym>
<synonym>a-keto-N-Butyric acid</synonym>
<synonym>a-Oxobutyrate</synonym>
<synonym>a-Oxobutyric acid</synonym>
<synonym>alpha-keto-N-Butyrate</synonym>
<synonym>alpha-keto-N-Butyric acid</synonym>
<synonym>alpha-Ketobutric acid</synonym>
<synonym>alpha-Oxobutyrate</synonym>
<synonym>alpha-Oxobutyric acid</synonym>
<synonym>Methyl-pyruvate</synonym>
<synonym>Methyl-pyruvic acid</synonym>
<synonym>Propionyl-formate</synonym>
<synonym>Propionyl-formic acid</synonym>
<synonym>alpha-Ketobutyric acid, sodium salt</synonym>
</synonyms>
<chemical_formula>C4H6O3</chemical_formula>
<average_molecular_weight>102.0886</average_molecular_weight>
<monisotopic_molecular_weight>102.031694058</monisotopic_molecular_weight>
<iupac_name>2-oxobutanoic acid</iupac_name>
<traditional_iupac>2-oxobutanoic acid</traditional_iupac>
<cas_registry_number>600-18-0</cas_registry_number>
<smiles>CCC(=O)C(O)=O</smiles>
<inchi>InChI=1S/C4H6O3/c1-2-3(5)4(6)7/h2H2,1H3,(H,6,7)</inchi>
<inchikey>TYEYBOSBBBHJIV-UHFFFAOYSA-N</inchikey>
<taxonomy>
<description>This compound belongs to the class of organic compounds known as short-chain keto acids and derivatives. These are keto acids with an alkyl chain the contains less than 6 carbon atoms.</description>
<direct_parent>Short-chain keto acids and derivatives</direct_parent>
<kingdom>Organic compounds</kingdom>
<super_class>Organic acids and derivatives</super_class>
<class>Keto acids and derivatives</class>
<sub_class>Short-chain keto acids and derivatives</sub_class>
<molecular_framework>Aliphatic acyclic compounds</molecular_framework>
<alternative_parents>
<alternative_parent>Alpha-hydroxy ketones</alternative_parent>
<alternative_parent>Alpha-keto acids and derivatives</alternative_parent>
<alternative_parent>Carboxylic acids</alternative_parent>
<alternative_parent>Hydrocarbon derivatives</alternative_parent>
<alternative_parent>Monocarboxylic acids and derivatives</alternative_parent>
<alternative_parent>Organic oxides</alternative_parent>
</alternative_parents>
<substituents>
<substituent>Aliphatic acyclic compound</substituent>
<substituent>Alpha-hydroxy ketone</substituent>
<substituent>Alpha-keto acid</substituent>
<substituent>Carbonyl group</substituent>
<substituent>Carboxylic acid</substituent>
<substituent>Carboxylic acid derivative</substituent>
<substituent>Hydrocarbon derivative</substituent>
<substituent>Ketone</substituent>
<substituent>Monocarboxylic acid or derivatives</substituent>
<substituent>Organic oxide</substituent>
<substituent>Organic oxygen compound</substituent>
<substituent>Organooxygen compound</substituent>
<substituent>Short-chain keto acid</substituent>
</substituents>
<external_descriptors>
<external_descriptor>2-oxo monocarboxylic acid</external_descriptor>
<external_descriptor>Oxo fatty acids</external_descriptor>
<external_descriptor>Oxo fatty acids</external_descriptor>
<external_descriptor>short-chain fatty acid</external_descriptor>
</external_descriptors>
</taxonomy>
<ontology>
<root>
<term>Disposition</term>
<definition>A concept that describes the origin of a chemical, its location within an organism, or its route of exposure.</definition>
<parent_id/>
<level>1</level>
<type>parent</type>
<descendants>
<descendant>
<term>Route of exposure</term>
<definition>A mean by which a chemical agent comes in contact with an organism, either under intended or unintended circumstances.</definition>
<parent_id>7724</parent_id>
<level>2</level>
<type>parent</type>
<descendants>
<descendant>
<term>Enteral</term>
<definition>Chemical exposure via the alimentary canal (mouth to anus).</definition>
<parent_id>7743</parent_id>
<level>3</level>
<type>parent</type>
<descendants>
<descendant>
<term>Ingestion</term>
<definition>Chemical exposure facilitated by entry through the mouth.</definition>
<parent_id>7744</parent_id>
<level>4</level>
<type>child</type>
</descendant>
</descendants>
</descendant>
</descendants>
</descendant>
<descendant>
<term>Source</term>
<definition>Natural or synthetic origin of a chemical.</definition>
<parent_id>7724</parent_id>
<level>2</level>
<type>parent</type>
<descendants>
<descendant>
<term>Endogenous</term>
<definition/>
<parent_id>7735</parent_id>
<level>3</level>
<type>child</type>
</descendant>
<descendant>
<term>Food</term>
<definition/>
<parent_id>7735</parent_id>
<level>3</level>
<type>child</type>
</descendant>
<descendant>
<term>Biological</term>
<definition>A living organism (species or a higher taxonomy rank), in which a chemical can be found.</definition>
<parent_id>7735</parent_id>
<level>3</level>
<type>parent</type>
<descendants>
<descendant>
<term>Plant</term>
<definition>A living organism belonging to the kingdom plantea. typically, it grows in a permanent site, absorbs water and inorganic substances through its roots, and synthesizes nutrients in its leaves by photosynthesis using the green pigment chlorophyll. examples incude trees, shrubs, herbs, grasses, ferns, and mosses.</definition>
<parent_id>7736</parent_id>
<level>4</level>
<type>parent</type>
<descendants>
<descendant>
<term>Poaceae</term>
<definition/>
<parent_id>7738</parent_id>
<level>5</level>
<type>child</type>
</descendant>
<descendant>
<term>Fabaceae</term>
<definition/>
<parent_id>7738</parent_id>
<level>5</level>
<type>child</type>
</descendant>
<descendant>
<term>Glycine max</term>
<definition/>
<parent_id>7738</parent_id>
<level>5</level>
<type>child</type>
</descendant>
<descendant>
<term>Cucurbitaceae</term>
<definition/>
<parent_id>7738</parent_id>
<level>5</level>
<type>child</type>
</descendant>
<descendant>
<term>Theobroma cacao</term>
<definition/>
<parent_id>7738</parent_id>
<level>5</level>
<type>child</type>
</descendant>
</descendants>
</descendant>
<descendant>
<term>Animal</term>
<definition>A living organism belonging to the kingdom animalia. it feeds on organic matter, typically having specialized sense organs and nervous system and able to respond rapidly to stimuli.</definition>
<parent_id>7736</parent_id>
<level>4</level>
<type>child</type>
</descendant>
</descendants>
</descendant>
</descendants>
</descendant>
<descendant>
<term>Biological location</term>
<definition>The physiological origin within an organism, including anatomical compnents, biofluids and excreta.</definition>
<parent_id>7724</parent_id>
<level>2</level>
<type>parent</type>
<descendants>
<descendant>
<term>Biofluid and excreta</term>
<definition>A liquid, semi-solid or solid material originating in the body.</definition>
<parent_id>7725</parent_id>
<level>3</level>
<type>parent</type>
<descendants>
<descendant>
<term>Saliva</term>
<definition>The watery fluid in the mouth made by the salivary glands. saliva moistens food to help digestion and it helps protect the mouth against infections. (nci).</definition>
<parent_id>7731</parent_id>
<level>4</level>
<type>child</type>
</descendant>
<descendant>
<term>Urine</term>
<definition>Excretion in liquid state processed by the kidney.</definition>
<parent_id>7731</parent_id>
<level>4</level>
<type>child</type>
</descendant>
<descendant>
<term>Blood</term>
<definition>A liquid tissue with the primary function of transporting oxygen and carbon dioxide (nci). it supplies the tissues with nutrients, removes waste products, and contains various components of the immune system defending the body against infection.</definition>
<parent_id>7731</parent_id>
<level>4</level>
<type>child</type>
</descendant>
<descendant>
<term>Cerebrospinal fluid</term>
<definition>The fluid that is contained within the brain ventricles, the subarachnoid space and the central canal of the spinal cord. (nci).</definition>
<parent_id>7731</parent_id>
<level>4</level>
<type>child</type>
</descendant>
</descendants>
</descendant>
<descendant>
<term>Subcellular</term>
<definition>An anatomical organizational level including a component within a biological cell .</definition>
<parent_id>7725</parent_id>
<level>3</level>
<type>parent</type>
<descendants>
<descendant>
<term>Cytoplasm</term>
<definition>The portion of the cell contained within the plasma membrane but excluding the nucleus.</definition>
<parent_id>7730</parent_id>
<level>4</level>
<type>child</type>
</descendant>
</descendants>
</descendant>
</descendants>
</descendant>
</descendants>
</root>
<root>
<term>Process</term>
<definition>Biological or chemical events, or a series thereof, leading to a known function or end-product.</definition>
<parent_id/>
<level>1</level>
<type>parent</type>
<descendants>
<descendant>
<term>Naturally occurring process</term>
<definition>Naturally-occurring molecular events or a series thereof, leading to a known function or end-product.</definition>
<parent_id>7659</parent_id>
<level>2</level>
<type>parent</type>
<descendants>
<descendant>
<term>Biological process</term>
<definition>Biological or chemical events or a series thereof, leading to a known function or end-product within an organism.</definition>
<parent_id>7660</parent_id>
<level>3</level>
<type>parent</type>
<descendants>
<descendant>
<term>Biochemical pathway</term>
<definition>A linked series of chemical reactions that occur in a defined order within or between organism cells, and lead to a known function or end product.</definition>
<parent_id>7661</parent_id>
<level>4</level>
<type>parent</type>
<descendants>
<descendant>
<term>Glycine and Serine Metabolism</term>
<definition> all of these compounds share common intermediates and almost all can be biosynthesized from one another. serine and glycine are not essential amino acids and can be synthesized from a number of routes.</definition>
<parent_id>7662</parent_id>
<level>5</level>
<type>child</type>
</descendant>
<descendant>
<term>Homocysteine Degradation</term>
<definition> in mammals, homocysteine is used to biosynthesize cysteine via the following pathway. first the enzyme cystathionine beta-synthetase irreversibly condenses homocysteine with l-serine, forming l-cystathionine.</definition>
<parent_id>7662</parent_id>
<level>5</level>
<type>child</type>
</descendant>
<descendant>
<term>Methionine Metabolism</term>
<definition> these pathways share 3 common reactions with both including the conversion of methionine to s-adenosylmethionine (sam),the utilization of sam in diverse transmethylation reactions yielding a methylated product plus s-adenosylhomocysteine, and the cleavage of s-adenosylhomocysteine to yield homocysteine and adenosine. the transulfuration reactions that produce cysteine from homocysteine and serine also produce α-ketobutyrate, the latter being converted first to propionyl-coa and then via a 3-step process to succinyl-coa.</definition>
<parent_id>7662</parent_id>
<level>5</level>
<type>child</type>
</descendant>
<descendant>
<term>Propanoate Metabolism</term>
<definition> alternatively, propionyl-coa results from the oxidative decarboxylation of 2-ketobutyric acid. this reaction is mediated by a large, multienzyme complex such as the branched-chain alpha-keto acid dehydrogenase complex.</definition>
<parent_id>7662</parent_id>
<level>5</level>
<type>child</type>
</descendant>
<descendant>
<term>Selenoamino Acid Metabolism</term>
<definition> these include selenocysteine, selenohomocysteine and selenomethionine. selenium and sulfur are chalcogen elements that share many chemical properties and so the substitution of normal (sulfur-containing) amino acids with selenoamino acids has little effect on protein structure and function.</definition>
<parent_id>7662</parent_id>
<level>5</level>
<type>child</type>
</descendant>
<descendant>
<term>Threonine and 2-Oxobutanoate Degradation</term>
<definition> in humans, threonine is converted to 2-oxobutanoate via serine dehydratase, and thereby enters the pathway leading to succinyl-coa. this is the major route for threonine degradation in humans.</definition>
<parent_id>7662</parent_id>
<level>5</level>
<type>child</type>
</descendant>
</descendants>
</descendant>
</descendants>
</descendant>
</descendants>
</descendant>
</descendants>
</root>
<root>
<term>Role</term>
<definition>The purpose or function assumed by a chemical, either naturally or as intended by humans .</definition>
<parent_id/>
<level>1</level>
<type>parent</type>
<descendants>
<descendant>
<term>Industrial application</term>
<definition>The assumed function of a chemical utilized by human.</definition>
<parent_id>7671</parent_id>
<level>2</level>
<type>parent</type>
<descendants>
<descendant>
<term>Pharmaceutical industry</term>
<definition>A pharmacologic activity for which a chemical substance is utilized owing to its biological role.</definition>
<parent_id>7678</parent_id>
<level>3</level>
<type>parent</type>
<descendants>
<descendant>
<term>Pharmaceutical</term>
<definition/>
<parent_id>7679</parent_id>
<level>4</level>
<type>child</type>
</descendant>
</descendants>
</descendant>
</descendants>
</descendant>
</descendants>
</root>
</ontology>
<state>Solid</state>
<experimental_properties>
<property>
<kind>water_solubility</kind>
<value>119 mg/mL</value>
<source/>
</property>
<property>
<kind>melting_point</kind>
<value>33 °C</value>
<source/>
</property>
</experimental_properties>
<predicted_properties>
<property>
<kind>logp</kind>
<value>0.07</value>
<source>ALOGPS</source>
</property>
<property>
<kind>logs</kind>
<value>-0.11</value>
<source>ALOGPS</source>
</property>
<property>
<kind>solubility</kind>
<value>79.2 g/L</value>
<source>ALOGPS</source>
</property>
<property>
<kind>logp</kind>
<value>0.77</value>
<source>ChemAxon</source>
</property>
<property>
<kind>pka_strongest_acidic</kind>
<value>3.19</value>
<source>ChemAxon</source>
</property>
<property>
<kind>pka_strongest_basic</kind>
<value>-9.7</value>
<source>ChemAxon</source>
</property>
<property>
<kind>iupac</kind>
<value>2-oxobutanoic acid</value>
<source>ChemAxon</source>
</property>
<property>
<kind>average_mass</kind>
<value>102.0886</value>
<source>ChemAxon</source>
</property>
<property>
<kind>mono_mass</kind>
<value>102.031694058</value>
<source>ChemAxon</source>
</property>
<property>
<kind>smiles</kind>
<value>CCC(=O)C(O)=O</value>
<source>ChemAxon</source>
</property>
<property>
<kind>formula</kind>
<value>C4H6O3</value>
<source>ChemAxon</source>
</property>
<property>
<kind>inchi</kind>
<value>InChI=1S/C4H6O3/c1-2-3(5)4(6)7/h2H2,1H3,(H,6,7)</value>
<source>ChemAxon</source>
</property>
<property>
<kind>inchikey</kind>
<value>TYEYBOSBBBHJIV-UHFFFAOYSA-N</value>
<source>ChemAxon</source>
</property>
<property>
<kind>polar_surface_area</kind>
<value>54.37</value>
<source>ChemAxon</source>
</property>
<property>
<kind>refractivity</kind>
<value>22.62</value>
<source>ChemAxon</source>
</property>
<property>
<kind>polarizability</kind>
<value>9.2</value>
<source>ChemAxon</source>
</property>
<property>
<kind>rotatable_bond_count</kind>
<value>2</value>
<source>ChemAxon</source>
</property>
<property>
<kind>acceptor_count</kind>
<value>3</value>
<source>ChemAxon</source>
</property>
<property>
<kind>donor_count</kind>
<value>1</value>
<source>ChemAxon</source>
</property>
<property>
<kind>physiological_charge</kind>
<value>-1</value>
<source>ChemAxon</source>
</property>
<property>
<kind>formal_charge</kind>
<value>0</value>
<source>ChemAxon</source>
</property>
<property>
<kind>number_of_rings</kind>
<value>0</value>
<source>ChemAxon</source>
</property>
<property>
<kind>bioavailability</kind>
<value>1</value>
<source>ChemAxon</source>
</property>
<property>
<kind>rule_of_five</kind>
<value>Yes</value>
<source>ChemAxon</source>
</property>
<property>
<kind>ghose_filter</kind>
<value>Yes</value>
<source>ChemAxon</source>
</property>
<property>
<kind>veber_rule</kind>
<value>Yes</value>
<source>ChemAxon</source>
</property>
<property>
<kind>mddr_like_rule</kind>
<value>Yes</value>
<source>ChemAxon</source>
</property>
</predicted_properties>
<spectra>
<spectrum>
<type>Specdb::CMs</type>
<spectrum_id>276</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::CMs</type>
<spectrum_id>277</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::CMs</type>
<spectrum_id>936</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::CMs</type>
<spectrum_id>937</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::CMs</type>
<spectrum_id>943</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::CMs</type>
<spectrum_id>3474</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::CMs</type>
<spectrum_id>30041</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::CMs</type>
<spectrum_id>30042</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::CMs</type>
<spectrum_id>30433</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::CMs</type>
<spectrum_id>30434</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::CMs</type>
<spectrum_id>30943</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::CMs</type>
<spectrum_id>30944</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::CMs</type>
<spectrum_id>30945</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::CMs</type>
<spectrum_id>31982</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::CMs</type>
<spectrum_id>31983</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::CMs</type>
<spectrum_id>37238</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::NmrOneD</type>
<spectrum_id>1024</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::NmrOneD</type>
<spectrum_id>4754</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::NmrOneD</type>
<spectrum_id>4755</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::MsMs</type>
<spectrum_id>7</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::MsMs</type>
<spectrum_id>8</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::MsMs</type>
<spectrum_id>9</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::MsMs</type>
<spectrum_id>2522</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::MsMs</type>
<spectrum_id>20636</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::MsMs</type>
<spectrum_id>20637</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::MsMs</type>
<spectrum_id>20638</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::MsMs</type>
<spectrum_id>22187</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::MsMs</type>
<spectrum_id>22188</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::MsMs</type>
<spectrum_id>22189</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::MsMs</type>
<spectrum_id>439247</spectrum_id>
</spectrum>
<spectrum>
<type>Specdb::NmrTwoD</type>
<spectrum_id>917</spectrum_id>
</spectrum>
</spectra>
<cellular_locations>
<cellular>Cytoplasm</cellular>
</cellular_locations>
<biospecimen_locations>
<biospecimen>Blood</biospecimen>
<biospecimen>Cerebrospinal Fluid (CSF)</biospecimen>
<biospecimen>Saliva</biospecimen>
<biospecimen>Urine</biospecimen>
</biospecimen_locations>
<tissue_locations>
</tissue_locations>
<pathways>
<pathway>
<name>3-Phosphoglycerate dehydrogenase deficiency</name>
<smpdb_id>SMP00721</smpdb_id>
<kegg_map_id/>
</pathway>
<pathway>
<name>Cystathionine Beta-Synthase Deficiency</name>
<smpdb_id>SMP00177</smpdb_id>
<kegg_map_id/>
</pathway>
<pathway>
<name>Dihydropyrimidine Dehydrogenase Deficiency (DHPD)</name>
<smpdb_id>SMP00179</smpdb_id>
<kegg_map_id/>
</pathway>
<pathway>
<name>Dimethylglycine Dehydrogenase Deficiency</name>
<smpdb_id>SMP00242</smpdb_id>
<kegg_map_id/>
</pathway>
<pathway>
<name>Dimethylglycine Dehydrogenase Deficiency</name>
<smpdb_id>SMP00484</smpdb_id>
<kegg_map_id/>
</pathway>
<pathway>
<name>Gamma-cystathionase deficiency (CTH)</name>
<smpdb_id>SMP00514</smpdb_id>
<kegg_map_id/>
</pathway>
<pathway>
<name>Glycine and Serine Metabolism</name>
<smpdb_id>SMP00004</smpdb_id>
<kegg_map_id>map00260</kegg_map_id>
</pathway>
<pathway>
<name>Glycine N-methyltransferase Deficiency</name>
<smpdb_id>SMP00222</smpdb_id>
<kegg_map_id/>
</pathway>
<pathway>
<name>Homocysteine Degradation</name>
<smpdb_id>SMP00455</smpdb_id>
<kegg_map_id></kegg_map_id>
</pathway>
<pathway>
<name>Homocystinuria, cystathionine beta-synthase deficiency</name>
<smpdb_id>SMP00515</smpdb_id>
<kegg_map_id/>
</pathway>
<pathway>
<name>Homocystinuria-megaloblastic anemia due to defect in cobalamin metabolism, cblG complementation type</name>
<smpdb_id>SMP00570</smpdb_id>
<kegg_map_id/>
</pathway>
<pathway>
<name>Hyperglycinemia, non-ketotic</name>
<smpdb_id>SMP00485</smpdb_id>
<kegg_map_id/>
</pathway>
<pathway>
<name>Hypermethioninemia</name>
<smpdb_id>SMP00341</smpdb_id>
<kegg_map_id/>
</pathway>
<pathway>
<name>Malonic Aciduria</name>
<smpdb_id>SMP00198</smpdb_id>
<kegg_map_id/>
</pathway>
<pathway>
<name>Malonyl-coa decarboxylase deficiency</name>
<smpdb_id>SMP00502</smpdb_id>
<kegg_map_id/>
</pathway>
<pathway>
<name>Methionine Adenosyltransferase Deficiency</name>
<smpdb_id>SMP00221</smpdb_id>
<kegg_map_id/>
</pathway>
<pathway>
<name>Methionine Metabolism</name>
<smpdb_id>SMP00033</smpdb_id>
<kegg_map_id>map00270</kegg_map_id>
</pathway>
<pathway>
<name>Methylenetetrahydrofolate Reductase Deficiency (MTHFRD)</name>
<smpdb_id>SMP00340</smpdb_id>
<kegg_map_id/>
</pathway>
<pathway>
<name>Methylmalonic Aciduria Due to Cobalamin-Related Disorders</name>
<smpdb_id>SMP00201</smpdb_id>
<kegg_map_id/>
</pathway>
<pathway>
<name>Non Ketotic Hyperglycinemia</name>
<smpdb_id>SMP00223</smpdb_id>
<kegg_map_id/>
</pathway>
<pathway>
<name>Propanoate Metabolism</name>
<smpdb_id>SMP00016</smpdb_id>
<kegg_map_id>map00640</kegg_map_id>
</pathway>
<pathway>
<name>S-Adenosylhomocysteine (SAH) Hydrolase Deficiency</name>
<smpdb_id>SMP00214</smpdb_id>
<kegg_map_id/>
</pathway>
<pathway>
<name>Sarcosinemia</name>
<smpdb_id>SMP00244</smpdb_id>
<kegg_map_id/>
</pathway>
<pathway>
<name>Selenoamino Acid Metabolism</name>
<smpdb_id>SMP00029</smpdb_id>
<kegg_map_id>map00450</kegg_map_id>
</pathway>
<pathway>
<name>Threonine and 2-Oxobutanoate Degradation</name>
<smpdb_id>SMP00452</smpdb_id>
<kegg_map_id></kegg_map_id>
</pathway>
</pathways>
<normal_concentrations>
<concentration>
<biospecimen>Blood</biospecimen>
<concentration_value>3.33 +/- 5.00</concentration_value>
<concentration_units>uM</concentration_units>
<subject_age>Adult (&gt;18 years old)</subject_age>
<subject_sex>Both</subject_sex>
<subject_condition>Normal</subject_condition>
<references>
<reference>
<reference_text>Yang W, Roth KS: Defect in alpha-ketobutyrate metabolism: a new inborn error. Clin Chim Acta. 1985 Jan 30;145(2):173-82.</reference_text>
<pubmed_id>3918815</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Blood</biospecimen>
<concentration_value>9.4 (3.4-15.4)</concentration_value>
<concentration_units>uM</concentration_units>
<subject_age>Adult (&gt;18 years old)</subject_age>
<subject_sex>Both</subject_sex>
<subject_condition>Normal</subject_condition>
<references>
<reference>
<reference_text>Lee SH, Kim SO, Chung BC: Gas chromatographic-mass spectrometric determination of urinary oxoacids using O-(2,3,4,5,6-pentafluorobenzyl)oxime-trimethylsilyl ester derivatization and cation-exchange chromatography. J Chromatogr B Biomed Sci Appl. 1998 Nov 20;719(1-2):1-7.</reference_text>
<pubmed_id>9869358</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Blood</biospecimen>
<concentration_value>8.6 (6.0-11.2)</concentration_value>
<concentration_units>uM</concentration_units>
<subject_age>Children (1-13 years old)</subject_age>
<subject_sex>Both</subject_sex>
<subject_condition>Normal</subject_condition>
<references>
<reference>
<reference_text>Rocchiccioli F, Leroux JP, Cartier PH: Microdetermination of 2-ketoglutaric acid in plasma and cerebrospinal fluid by capillary gas chromatography mass spectrometry; application to pediatrics. Biomed Mass Spectrom. 1984 Jan;11(1):24-8.</reference_text>
<pubmed_id>6704500</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Cerebrospinal Fluid (CSF)</biospecimen>
<concentration_value>4.8 (3.4-6.2)</concentration_value>
<concentration_units>uM</concentration_units>
<subject_age>Children (1-13 years old)</subject_age>
<subject_sex>Both</subject_sex>
<subject_condition>Normal</subject_condition>
<references>
<reference>
<reference_text>Rocchiccioli F, Leroux JP, Cartier PH: Microdetermination of 2-ketoglutaric acid in plasma and cerebrospinal fluid by capillary gas chromatography mass spectrometry; application to pediatrics. Biomed Mass Spectrom. 1984 Jan;11(1):24-8.</reference_text>
<pubmed_id>6704500</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Saliva</biospecimen>
<concentration_value>0.0412 +/- 0.214</concentration_value>
<concentration_units>uM</concentration_units>
<subject_age>Adult (&gt;18 years old)</subject_age>
<subject_sex>Male</subject_sex>
<subject_condition>Normal</subject_condition>
<comment>Saliva samples were collected at 16:00 (n=27)</comment>
<references>
<reference>
<reference_text>Sugimoto et al. (2013) Physiological and environmental parameters associated with mass spectrometry-based salivary metabolomic profiles. </reference_text>
<pubmed_id/>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Saliva</biospecimen>
<concentration_value>2.62 +/- 4.13</concentration_value>
<concentration_units>uM</concentration_units>
<subject_age>Adult (&gt;18 years old)</subject_age>
<subject_sex>Not Specified</subject_sex>
<subject_condition>Normal</subject_condition>
<comment>BMI ≥ 21.00 kg/m2 (n=22)</comment>
<references>
<reference>
<reference_text>Sugimoto et al. (2013) Physiological and environmental parameters associated with mass spectrometry-based salivary metabolomic profiles. </reference_text>
<pubmed_id/>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Saliva</biospecimen>
<concentration_value>4.06 +/- 8.39</concentration_value>
<concentration_units>uM</concentration_units>
<subject_age>Adult (&gt;18 years old)</subject_age>
<subject_sex>Female</subject_sex>
<subject_condition>Normal</subject_condition>
<comment>Saliva samples were collected at 16:00 (n=24)</comment>
<references>
<reference>
<reference_text>Sugimoto et al. (2013) Physiological and environmental parameters associated with mass spectrometry-based salivary metabolomic profiles. </reference_text>
<pubmed_id/>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Saliva</biospecimen>
<concentration_value>4.12 +/- 4.41</concentration_value>
<concentration_units>uM</concentration_units>
<subject_age>Adult (&gt;18 years old)</subject_age>
<subject_sex>Not Specified</subject_sex>
<subject_condition>Normal</subject_condition>
<comment>BMI &lt; 21.00 kg/m2 (n=45)</comment>
<references>
<reference>
<reference_text>Sugimoto et al. (2013) Physiological and environmental parameters associated with mass spectrometry-based salivary metabolomic profiles. </reference_text>
<pubmed_id/>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Urine</biospecimen>
<concentration_value>0.39 (0.05-2.2)</concentration_value>
<concentration_units>umol/mmol creatinine</concentration_units>
<subject_age>Adult (&gt;18 years old)</subject_age>
<subject_sex>Male</subject_sex>
<subject_condition>Normal</subject_condition>
<references>
<reference>
<reference_text>Lee SH, Kim SO, Chung BC: Gas chromatographic-mass spectrometric determination of urinary oxoacids using O-(2,3,4,5,6-pentafluorobenzyl)oxime-trimethylsilyl ester derivatization and cation-exchange chromatography. J Chromatogr B Biomed Sci Appl. 1998 Nov 20;719(1-2):1-7.</reference_text>
<pubmed_id>9869358</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Urine</biospecimen>
<concentration_value>0.13 (0.04-0.51)</concentration_value>
<concentration_units>umol/mmol creatinine</concentration_units>
<subject_age>Adult (&gt;18 years old)</subject_age>
<subject_sex>Female</subject_sex>
<subject_condition>Normal</subject_condition>
<references>
<reference>
<reference_text>Lee SH, Kim SO, Chung BC: Gas chromatographic-mass spectrometric determination of urinary oxoacids using O-(2,3,4,5,6-pentafluorobenzyl)oxime-trimethylsilyl ester derivatization and cation-exchange chromatography. J Chromatogr B Biomed Sci Appl. 1998 Nov 20;719(1-2):1-7.</reference_text>
<pubmed_id>9869358</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Urine</biospecimen>
<concentration_value/>
<concentration_units/>
<subject_age>Adult (&gt;18 years old)</subject_age>
<subject_sex>Both</subject_sex>
<subject_condition>Normal</subject_condition>
<comment>Urine compound detected by GC-MS</comment>
<references>
<reference>
<reference_text>Bouatra S, Aziat F, Mandal R, Guo AC, Wilson MR, Knox C, Bjorndahl TC, Krishnamurthy R, Saleem F, Liu P, Dame ZT, Poelzer J, Huynh J, Yallou FS, Psychogios N, Dong E, Bogumil R, Roehring C, Wishart DS: The human urine metabolome. PLoS One. 2013 Sep 4;8(9):e73076. doi: 10.1371/journal.pone.0073076. eCollection 2013.</reference_text>
<pubmed_id>24023812</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Urine</biospecimen>
<concentration_value>9.476 +/- 6.626</concentration_value>
<concentration_units>umol/mmol creatinine</concentration_units>
<subject_age>Children (1 - 13 years old)</subject_age>
<subject_sex>Not Specified</subject_sex>
<subject_condition>Normal</subject_condition>
<comment>By NMR</comment>
<references>
<reference>
<reference_text>Mordechai, Hien, and David S. Wishart</reference_text>
<pubmed_id/>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Urine</biospecimen>
<concentration_value>2.9 (0.7-5.4)</concentration_value>
<concentration_units>umol/mmol creatinine</concentration_units>
<subject_age>Adult (&gt;18 years old)</subject_age>
<subject_sex>Both</subject_sex>
<subject_condition>Normal</subject_condition>
<comment>urine by NMR</comment>
<references>
<reference>
<reference_text>Bouatra S, Aziat F, Mandal R, Guo AC, Wilson MR, Knox C, Bjorndahl TC, Krishnamurthy R, Saleem F, Liu P, Dame ZT, Poelzer J, Huynh J, Yallou FS, Psychogios N, Dong E, Bogumil R, Roehring C, Wishart DS: The human urine metabolome. PLoS One. 2013 Sep 4;8(9):e73076. doi: 10.1371/journal.pone.0073076. eCollection 2013.</reference_text>
<pubmed_id>24023812</pubmed_id>
</reference>
</references>
</concentration>
<concentration>
<biospecimen>Urine</biospecimen>
<concentration_value>2.6 (1.1-4.1) </concentration_value>
<concentration_units>umol/mmol creatinine</concentration_units>
<subject_age>Adult (&gt;18 years old)</subject_age>
<subject_sex>Male</subject_sex>
<subject_condition>Normal</subject_condition>
<references>
<reference>
<reference_text>Shaykhutdinov RA, MacInnis GD, Dowlatabadi R, Weljie AM, Vogel HJ. Quantitative analysis of metabolite concentrations in human urine samples using 13C{1H} NMR spectroscopy. Metabolomics. 2009</reference_text>
<pubmed_id/>
</reference>
</references>
</concentration>
</normal_concentrations>
<abnormal_concentrations>
<concentration>
<biospecimen>Urine</biospecimen>
<concentration_value>6.564 +/- 7.802</concentration_value>
<concentration_units>umol/mmol creatinine</concentration_units>
<patient_age>Children (1 - 13 years old)</patient_age>
<patient_sex>Not Specified</patient_sex>
<patient_information>Eosinophilic esophagitis</patient_information>
<comment>By NMR</comment>
<references>
<reference>
<reference_text>Mordechai, Hien, and David S. Wishart</reference_text>
<pubmed_id/>
</reference>
</references>
</concentration>
</abnormal_concentrations>
<diseases>
</diseases>
<drugbank_id>DB04553</drugbank_id>
<drugbank_metabolite_id/>
<phenol_explorer_compound_id/>
<phenol_explorer_metabolite_id/>
<foodb_id>FDB003359</foodb_id>
<knapsack_id>C00019675</knapsack_id>
<chemspider_id>57</chemspider_id>
<kegg_id>C00109</kegg_id>
<biocyc_id>2-OXOBUTANOATE</biocyc_id>
<bigg_id>33889</bigg_id>
<wikipidia>Alpha-ketobutyric_acid</wikipidia>
<nugowiki>3</nugowiki>
<metagene/>
<metlin_id/>
<pubchem_compound_id>58</pubchem_compound_id>
<het_id>2KT</het_id>
<chebi_id>30831</chebi_id>
<synthesis_reference>Figge, Rainer; Lux, Fabien; Raynaud, Celine; Soucaille, Philippe. Production of a-ketobutyrate by engineered Escherichia coli.PCT Int. Appl. (2006), 31pp. </synthesis_reference>
<general_references>
<reference>
<reference_text>Sprague CL, Elfarra AA: Detection of carboxylic acids and inhibition of hippuric acid formation in rats treated with 3-butene-1,2-diol, a major metabolite of 1,3-butadiene. Drug Metab Dispos. 2003 Aug;31(8):986-92.</reference_text>
<pubmed_id>12867486</pubmed_id>
</reference>
<reference>
<reference_text>Yaegaki K, Sanada K: Biochemical and clinical factors influencing oral malodor in periodontal patients. J Periodontol. 1992 Sep;63(9):783-9.</reference_text>
<pubmed_id>1474480</pubmed_id>
</reference>
<reference>
<reference_text>Yaegaki K, Sanada K: Effects of a two-phase oil-water mouthwash on halitosis. Clin Prev Dent. 1992 Jan-Feb;14(1):5-9.</reference_text>
<pubmed_id>1499240</pubmed_id>
</reference>
<reference>
<reference_text>Yang W, Roth KS: Defect in alpha-ketobutyrate metabolism: a new inborn error. Clin Chim Acta. 1985 Jan 30;145(2):173-82.</reference_text>
<pubmed_id>3918815</pubmed_id>
</reference>
</general_references>
<protein_associations>
<protein>
<protein_accession>HMDBP00012</protein_accession>
<name>Pyruvate dehydrogenase E1 component subunit beta, mitochondrial</name>
<uniprot_id>P11177</uniprot_id>
<gene_name>PDHB</gene_name>
<protein_type>Enzyme</protein_type>
</protein>
<protein>
<protein_accession>HMDBP00046</protein_accession>
<name>Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial</name>
<uniprot_id>P08559</uniprot_id>
<gene_name>PDHA1</gene_name>
<protein_type>Enzyme</protein_type>
</protein>
<protein>
<protein_accession>HMDBP00050</protein_accession>
<name>Pyruvate dehydrogenase E1 component subunit alpha, testis-specific form, mitochondrial</name>
<uniprot_id>P29803</uniprot_id>
<gene_name>PDHA2</gene_name>
<protein_type>Enzyme</protein_type>
</protein>
<protein>
<protein_accession>HMDBP00299</protein_accession>
<name>2-oxoisovalerate dehydrogenase subunit beta, mitochondrial</name>
<uniprot_id>P21953</uniprot_id>
<gene_name>BCKDHB</gene_name>
<protein_type>Enzyme</protein_type>
</protein>
<protein>
<protein_accession>HMDBP00300</protein_accession>
<name>2-oxoisovalerate dehydrogenase subunit alpha, mitochondrial</name>
<uniprot_id>P12694</uniprot_id>
<gene_name>BCKDHA</gene_name>
<protein_type>Unknown</protein_type>
</protein>
<protein>
<protein_accession>HMDBP00439</protein_accession>
<name>2-oxoglutarate dehydrogenase, mitochondrial</name>
<uniprot_id>Q02218</uniprot_id>
<gene_name>OGDH</gene_name>
<protein_type>Enzyme</protein_type>
</protein>
<protein>
<protein_accession>HMDBP00538</protein_accession>
<name>Cystathionine gamma-lyase</name>
<uniprot_id>P32929</uniprot_id>
<gene_name>CTH</gene_name>
<protein_type>Enzyme</protein_type>
</protein>
<protein>
<protein_accession>HMDBP00671</protein_accession>
<name>L-serine dehydratase/L-threonine deaminase</name>
<uniprot_id>P20132</uniprot_id>
<gene_name>SDS</gene_name>
<protein_type>Enzyme</protein_type>
</protein>
<protein>
<protein_accession>HMDBP00893</protein_accession>
<name>L-lactate dehydrogenase A-like 6A</name>
<uniprot_id>Q6ZMR3</uniprot_id>
<gene_name>LDHAL6A</gene_name>
<protein_type>Unknown</protein_type>
</protein>
<protein>
<protein_accession>HMDBP00914</protein_accession>
<name>Urocanate hydratase</name>
<uniprot_id>Q96N76</uniprot_id>
<gene_name>UROC1</gene_name>
<protein_type>Unknown</protein_type>
</protein>
<protein>
<protein_accession>HMDBP01493</protein_accession>
<name>[3-methyl-2-oxobutanoate dehydrogenase [lipoamide]] kinase, mitochondrial</name>
<uniprot_id>O14874</uniprot_id>
<gene_name>BCKDK</gene_name>
<protein_type>Enzyme</protein_type>
</protein>
<protein>
<protein_accession>HMDBP03577</protein_accession>
<name>L-lactate dehydrogenase B chain</name>
<uniprot_id>P07195</uniprot_id>
<gene_name>LDHB</gene_name>
<protein_type>Unknown</protein_type>
</protein>
<protein>
<protein_accession>HMDBP03578</protein_accession>
<name>L-lactate dehydrogenase C chain</name>
<uniprot_id>P07864</uniprot_id>
<gene_name>LDHC</gene_name>
<protein_type>Unknown</protein_type>
</protein>
<protein>
<protein_accession>HMDBP03579</protein_accession>
<name>L-lactate dehydrogenase A chain</name>
<uniprot_id>P00338</uniprot_id>
<gene_name>LDHA</gene_name>
<protein_type>Unknown</protein_type>
</protein>
<protein>
<protein_accession>HMDBP03581</protein_accession>
<name>L-lactate dehydrogenase A-like 6B</name>
<uniprot_id>Q9BYZ2</uniprot_id>
<gene_name>LDHAL6B</gene_name>
<protein_type>Unknown</protein_type>
</protein>
<protein>
<protein_accession>HMDBP03654</protein_accession>
<name>Trimethyllysine dioxygenase, mitochondrial</name>
<uniprot_id>Q9NVH6</uniprot_id>
<gene_name>TMLHE</gene_name>
<protein_type>Unknown</protein_type>
</protein>
<protein>
<protein_accession>HMDBP08668</protein_accession>
<name>Alpha-ketoglutarate-dependent dioxygenase alkB homolog 2</name>
<uniprot_id>Q6NS38</uniprot_id>
<gene_name>ALKBH2</gene_name>
<protein_type>Unknown</protein_type>
</protein>
<protein>
<protein_accession>HMDBP08669</protein_accession>
<name>Alpha-ketoglutarate-dependent dioxygenase alkB homolog 3</name>
<uniprot_id>Q96Q83</uniprot_id>
<gene_name>ALKBH3</gene_name>
<protein_type>Unknown</protein_type>
</protein>
<protein>
<protein_accession>HMDBP08972</protein_accession>
<name>Serine dehydratase-like</name>
<uniprot_id>Q96GA7</uniprot_id>
<gene_name>SDSL</gene_name>
<protein_type>Enzyme</protein_type>
</protein>
<protein>
<protein_accession>HMDBP09100</protein_accession>
<name>2-oxoglutarate dehydrogenase-like, mitochondrial</name>
<uniprot_id>Q9ULD0</uniprot_id>
<gene_name>OGDHL</gene_name>
<protein_type>Enzyme</protein_type>
</protein>
<protein>
<protein_accession>HMDBP09101</protein_accession>
<name>2-oxoglutarate receptor 1</name>
<uniprot_id>Q96P68</uniprot_id>
<gene_name>OXGR1</gene_name>
<protein_type>Unknown</protein_type>
</protein>
</protein_associations>
</metabolite>
</xml_split:root>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment