Skip to content

Instantly share code, notes, and snippets.

@volkancakil
Forked from mitchellh/Atlas.zig
Created April 16, 2022 17:30
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save volkancakil/104ef9ebeac2eb35ecc9eec2efeb8bd3 to your computer and use it in GitHub Desktop.
Save volkancakil/104ef9ebeac2eb35ecc9eec2efeb8bd3 to your computer and use it in GitHub Desktop.
Bin-packed texture atlas implementation in Zig. https://en.wikipedia.org/wiki/Texture_atlas
//! Implements a texture atlas (https://en.wikipedia.org/wiki/Texture_atlas).
//!
//! The implementation is based on "A Thousand Ways to Pack the Bin - A
//! Practical Approach to Two-Dimensional Rectangle Bin Packing" by Jukka
//! Jylänki. This specific implementation is based heavily on
//! Nicolas P. Rougier's freetype-gl project as well as Jukka's C++
//! implementation: https://github.com/juj/RectangleBinPack
//!
//! Limitations that are easy to fix, but I didn't need them:
//!
//! * Greyscale support only, no support for RGB or RGBA.
//! * Written data must be packed, no support for custom strides.
//! * Texture is always a square, no ability to set width != height. Note
//! that regions written INTO the atlas do not have to be square, only
//! the full atlas texture itself.
//!
const Atlas = @This();
const std = @import("std");
const assert = std.debug.assert;
const Allocator = std.mem.Allocator;
const testing = std.testing;
/// Data is the raw texture data.
data: []u8,
/// Width and height of the atlas texture. The current implementation is
/// always square so this is both the width and the height.
size: u32 = 0,
/// The nodes (rectangles) of available space.
nodes: std.ArrayListUnmanaged(Node) = .{},
const Node = struct {
x: u32,
y: u32,
width: u32,
};
pub const Error = error{
/// Atlas cannot fit the desired region. You must enlarge the atlas.
AtlasFull,
};
/// A region within the texture atlas. These can be acquired using the
/// "reserve" function. A region reservation is required to write data.
pub const Region = struct {
x: u32,
y: u32,
width: u32,
height: u32,
};
pub fn init(alloc: Allocator, size: u32) !Atlas {
var result = Atlas{
.data = try alloc.alloc(u8, size * size),
.size = size,
.nodes = .{},
};
// TODO: figure out optimal prealloc based on real world usage
try result.nodes.ensureUnusedCapacity(alloc, 64);
// This sets up our initial state
result.clear();
return result;
}
pub fn deinit(self: *Atlas, alloc: Allocator) void {
self.nodes.deinit(alloc);
alloc.free(self.data);
self.* = undefined;
}
/// Reserve a region within the atlas with the given width and height.
///
/// May allocate to add a new rectangle into the internal list of rectangles.
/// This will not automatically enlarge the texture if it is full.
pub fn reserve(self: *Atlas, alloc: Allocator, width: u32, height: u32) !Region {
// x, y are populated within :best_idx below
var region: Region = .{ .x = 0, .y = 0, .width = width, .height = height };
// Find the location in our nodes list to insert the new node for this region.
var best_idx: usize = best_idx: {
var best_height: u32 = std.math.maxInt(u32);
var best_width: u32 = best_height;
var chosen: ?usize = null;
var i: usize = 0;
while (i < self.nodes.items.len) : (i += 1) {
// Check if our region fits within this node.
const y = self.fit(i, width, height) orelse continue;
const node = self.nodes.items[i];
if ((y + height) < best_height or
((y + height) == best_height and
(node.width > 0 and node.width < best_width)))
{
chosen = i;
best_width = node.width;
best_height = y + height;
region.x = node.x;
region.y = y;
}
}
// If we never found a chosen index, the atlas cannot fit our region.
break :best_idx chosen orelse return Error.AtlasFull;
};
// Insert our new node for this rectangle at the exact best index
try self.nodes.insert(alloc, best_idx, .{
.x = region.x,
.y = region.y + height,
.width = width,
});
// Optimize our rectangles
var i: usize = best_idx + 1;
while (i < self.nodes.items.len) : (i += 1) {
const node = &self.nodes.items[i];
const prev = self.nodes.items[i - 1];
if (node.x < (prev.x + prev.width)) {
const shrink = prev.x + prev.width - node.x;
node.x += shrink;
node.width -|= shrink;
if (node.width <= 0) {
_ = self.nodes.orderedRemove(i);
i -= 1;
continue;
}
}
break;
}
self.merge();
return region;
}
/// Attempts to fit a rectangle of width x height into the node at idx.
/// The return value is the y within the texture where the rectangle can be
/// placed. The x is the same as the node.
fn fit(self: Atlas, idx: usize, width: u32, height: u32) ?u32 {
// If the added width exceeds our texture size, it doesn't fit.
const node = self.nodes.items[idx];
if ((node.x + width) > (self.size - 1)) return null;
// Go node by node looking for space that can fit our width.
var y = node.y;
var i = idx;
var width_left = width;
while (width_left > 0) : (i += 1) {
const n = self.nodes.items[i];
if (n.y > y) y = n.y;
// If the added height exceeds our texture size, it doesn't fit.
if ((y + height) > (self.size - 1)) return null;
width_left -|= n.width;
}
return y;
}
/// Merge adjacent nodes with the same y value.
fn merge(self: *Atlas) void {
var i: usize = 0;
while (i < self.nodes.items.len - 1) {
const node = &self.nodes.items[i];
const next = self.nodes.items[i + 1];
if (node.y == next.y) {
node.width += next.width;
_ = self.nodes.orderedRemove(i + 1);
continue;
}
i += 1;
}
}
/// Set the data associated with a reserved region. The data is expected
/// to fit exactly within the region.
pub fn set(self: *Atlas, reg: Region, data: []const u8) void {
assert(reg.x < (self.size - 1));
assert((reg.x + reg.width) <= (self.size - 1));
assert(reg.y < (self.size - 1));
assert((reg.y + reg.height) <= (self.size - 1));
var i: u32 = 0;
while (i < reg.height) : (i += 1) {
const tex_offset = ((reg.y + i) * self.size) + reg.x;
const data_offset = i * reg.width;
std.mem.copy(
u8,
self.data[tex_offset..],
data[data_offset .. data_offset + reg.width],
);
}
}
// Grow the texture to the new size, preserving all previously written data.
pub fn grow(self: *Atlas, alloc: Allocator, size_new: u32) Allocator.Error!void {
assert(size_new >= self.size);
if (size_new == self.size) return;
// Preserve our old values so we can copy the old data
const data_old = self.data;
const size_old = self.size;
self.data = try alloc.alloc(u8, size_new * size_new);
defer alloc.free(data_old); // Only defer after new data succeeded
self.size = size_new; // Only set size after new alloc succeeded
std.mem.set(u8, self.data, 0);
self.set(.{
.x = 0, // don't bother skipping border so we can avoid strides
.y = 1, // skip the first border row
.width = size_old,
.height = size_old - 2, // skip the last border row
}, data_old[size_old..]);
// Add our new rectangle for our added righthand space
try self.nodes.append(alloc, .{
.x = size_old - 1,
.y = 1,
.width = size_new - size_old,
});
}
// Empty the atlas. This doesn't reclaim any previously allocated memory.
pub fn clear(self: *Atlas) void {
std.mem.set(u8, self.data, 0);
self.nodes.clearRetainingCapacity();
// Add our initial rectangle. This is the size of the full texture
// and is the initial rectangle we fit our regions in. We keep a 1px border
// to avoid artifacting when sampling the texture.
self.nodes.appendAssumeCapacity(.{ .x = 1, .y = 1, .width = self.size - 2 });
}
test "exact fit" {
const alloc = testing.allocator;
var atlas = try init(alloc, 34); // +2 for 1px border
defer atlas.deinit(alloc);
_ = try atlas.reserve(alloc, 32, 32);
try testing.expectError(Error.AtlasFull, atlas.reserve(alloc, 1, 1));
}
test "doesnt fit" {
const alloc = testing.allocator;
var atlas = try init(alloc, 32);
defer atlas.deinit(alloc);
// doesn't fit due to border
try testing.expectError(Error.AtlasFull, atlas.reserve(alloc, 32, 32));
}
test "fit multiple" {
const alloc = testing.allocator;
var atlas = try init(alloc, 32);
defer atlas.deinit(alloc);
_ = try atlas.reserve(alloc, 15, 30);
_ = try atlas.reserve(alloc, 15, 30);
try testing.expectError(Error.AtlasFull, atlas.reserve(alloc, 1, 1));
}
test "writing data" {
const alloc = testing.allocator;
var atlas = try init(alloc, 32);
defer atlas.deinit(alloc);
const reg = try atlas.reserve(alloc, 2, 2);
atlas.set(reg, &[_]u8{ 1, 2, 3, 4 });
// 33 because of the 1px border and so on
try testing.expectEqual(@as(u8, 1), atlas.data[33]);
try testing.expectEqual(@as(u8, 2), atlas.data[34]);
try testing.expectEqual(@as(u8, 3), atlas.data[65]);
try testing.expectEqual(@as(u8, 4), atlas.data[66]);
}
test "grow" {
const alloc = testing.allocator;
var atlas = try init(alloc, 4); // +2 for 1px border
defer atlas.deinit(alloc);
const reg = try atlas.reserve(alloc, 2, 2);
try testing.expectError(Error.AtlasFull, atlas.reserve(alloc, 1, 1));
// Write some data so we can verify that growing doesn't mess it up
atlas.set(reg, &[_]u8{ 1, 2, 3, 4 });
try testing.expectEqual(@as(u8, 1), atlas.data[5]);
try testing.expectEqual(@as(u8, 2), atlas.data[6]);
try testing.expectEqual(@as(u8, 3), atlas.data[9]);
try testing.expectEqual(@as(u8, 4), atlas.data[10]);
// Expand by exactly 1 should fit our new 1x1 block.
try atlas.grow(alloc, atlas.size + 1);
_ = try atlas.reserve(alloc, 1, 1);
// Ensure our data is still set. Not the offsets change due to size.
try testing.expectEqual(@as(u8, 1), atlas.data[atlas.size + 1]);
try testing.expectEqual(@as(u8, 2), atlas.data[atlas.size + 2]);
try testing.expectEqual(@as(u8, 3), atlas.data[atlas.size * 2 + 1]);
try testing.expectEqual(@as(u8, 4), atlas.data[atlas.size * 2 + 2]);
}

Copyright 2022 Mitchell Hashimoto

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment