You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Deploy project with Dockerfile to Dokku using Github Actions and Github Container Registry (ghcr.io). Deploy either staging or production based on branch.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
static video to realtime live stream to twitch with ffmpeg - quick n dirty
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Retrain a MobileNet model for the web with TensorFlow for Poets and TensorFlow.js
Retrain a MobileNet model and use it in the browser with TensorFlow.js
DRAFT
Combining TensorFlow for Poets and TensorFlow.js.
Retrain a MobileNet V1 or V2 model on your own dataset using the CPU only.
I'm using a MacBook Pro without Nvidia GPU.
MobileNets can be used for image classification. This guide shows the steps I took to retrain a MobileNet on a custom dataset, and how to convert and use the retrained model in the browser using TensorFlow.js. The total time to set up, retrain the model and use it in the browser can take less than 30 minutes (depending on the size of your dataset).
Example app - HTML/JS and a retrained MobileNet V1/V2 model.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters