Skip to content

Instantly share code, notes, and snippets.

@xianrenb
Last active November 29, 2020 02:35
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save xianrenb/9dd3752b8a61c56b7195bd6f8da16e9c to your computer and use it in GitHub Desktop.
Save xianrenb/9dd3752b8a61c56b7195bd6f8da16e9c to your computer and use it in GitHub Desktop.
Spatial Probability Density
===========================
假設 ρ 是 spatial probability density
∫∫∫ ρ dx dy dz = 1 ...(1)
let
ρ = ρ_c + ρ_s ...(2)
set
∫∫∫ ρ_c dx dy dz = (cos(ω t))^2 ...(3)
∫∫∫ ρ_s dx dy dz = (sin(ω t))^2 ...(4)
檢查:
(3) + (4):
∫∫∫ (ρ_c + ρ_s) dx dy dz = (cos(ω t))^2 + (sin(ω t))^2
=> ∫∫∫ ρ dx dy dz = 1
符合 (1) 式。
(3):
∫∫∫ ρ_c dx dy dz = (1 + cos(2 ω t))/2
∫∫∫ ρ_c dx dy dz = (1 + (e^(i 2 ω t) + e^(-i 2 ω t))/2)/2
∫∫∫ ρ_c dx dy dz = (1 + (e^(i 2 h_bar ω t/h_bar) + e^(-i 2 h_bar ω t/h_bar))/2)/2
∫∫∫ ρ_c dx dy dz = (1 + (e^(i 2 E t/h_bar) + e^(-i 2 E t/h_bar))/2)/2 ...(5)
(4):
∫∫∫ ρ_s dx dy dz = (1 - cos(2 ω t))/2
∫∫∫ ρ_s dx dy dz = (1 - (e^(i 2 ω t) + e^(-i 2 ω t))/2)/2
∫∫∫ ρ_s dx dy dz = (1 - (e^(i 2 h_bar ω t/h_bar) + e^(-i 2 h_bar ω t/h_bar))/2)/2
∫∫∫ ρ_s dx dy dz = (1 - (e^(i 2 E t/h_bar) + e^(-i 2 E t/h_bar))/2)/2 ...(6)
(5):
ρ_c = d^3/(dx dy dz) (1 + (e^(i 2 E t/h_bar) + e^(-i 2 E t/h_bar))/2)/2
ρ_c = dt/dx dt/dy dt/dz d^3/dt^3 (1 + (e^(i 2 E t/h_bar) + e^(-i 2 E t/h_bar))/2)/2
ρ_c = 1/(dx/dt) 1/(dy/dt) 1/(dz/dt) d^3/dt^3 (1 + (e^(i 2 E t/h_bar) + e^(-i 2 E t/h_bar))/2)/2
ρ_c = 1/v_x 1/v_y 1/v_z d^3/dt^3 (1 + (e^(i 2 E t/h_bar) + e^(-i 2 E t/h_bar))/2)/2
ρ_c = 1/(v_x v_y v_z) d^3/dt^3 (1 + (e^(i 2 E t/h_bar) + e^(-i 2 E t/h_bar))/2)/2 ...(7)
similarly
(6):
ρ_s = 1/(v_x v_y v_z) d^3/dt^3 (1 - (e^(i 2 E t/h_bar) + e^(-i 2 E t/h_bar))/2)/2 ...(8)
按等效座標理論
p x = E t ...(9)
3D 效果
p . r = E t
因為下面有用到 E field,以 U 代替 E :
p . r = U t ...(10)
同理
(7):
ρ_c = 1/(v_x v_y v_z) d^3/dt^3 (1 + (e^(i 2 U t/h_bar) + e^(-i 2 U t/h_bar))/2)/2 ...(11)
(8):
ρ_s = 1/(v_x v_y v_z) d^3/dt^3 (1 - (e^(i 2 U t/h_bar) + e^(-i 2 U t/h_bar))/2)/2 ...(12)
F = m E_g + m v × B_g + q E + q v × B ...(13)
(10):
d/dt (p . r) = d/dt (U t)
dp/dt . r + p . dr/dt = dU/dt t + U
F . r + p . v = t d/dt (h f) + U
F . r + p . v = h t df/dt + U
U = F . r + p . v - h t df/dt ...(14)
(13) & (14):
U = (m E_g + m v × B_g + q E + q v × B) . r + p . v - h t df/dt ...(15)
(11) & (15):
ρ_c = 1/(v_x v_y v_z) d^3/dt^3 (1 + (e^(i 2 ((m E_g + m v × B_g + q E + q v × B) . r + p . v - h t df/dt) t/h_bar) + e^(-i 2 ((m E_g + m v × B_g + q E + q v × B) . r + p . v - h t df/dt) t/h_bar))/2)/2 ...(16)
(12) & (15):
ρ_s = 1/(v_x v_y v_z) d^3/dt^3 (1 - (e^(i 2 ((m E_g + m v × B_g + q E + q v × B) . r + p . v - h t df/dt) t/h_bar) + e^(-i 2 ((m E_g + m v × B_g + q E + q v × B) . r + p . v - h t df/dt) t/h_bar))/2)/2 ...(17)
(2), (16) & (17):
ρ = 1/(v_x v_y v_z) (d^3/dt^3 (1 + (e^(i 2 ((m E_g + m v × B_g + q E + q v × B) . r + p . v - h t df/dt) t/h_bar) + e^(-i 2 ((m E_g + m v × B_g + q E + q v × B) . r + p . v - h t df/dt) t/h_bar))/2)/2) +
1/(v_x v_y v_z) (d^3/dt^3 (1 - (e^(i 2 ((m E_g + m v × B_g + q E + q v × B) . r + p . v - h t df/dt) t/h_bar) + e^(-i 2 ((m E_g + m v × B_g + q E + q v × B) . r + p . v - h t df/dt) t/h_bar))/2)/2) ...(18)
(10) & (12):
ρ_s = 1/(v_x v_y v_z) d^3/dt^3 (1 - (e^(i 2 (p . r)/h_bar) + e^(-i 2 (p . r)/h_bar))/2)/2 ...(19)
(2), (16) & (19):
ρ = 1/(v_x v_y v_z) (d^3/dt^3 (1 + (e^(i 2 ((m E_g + m v × B_g + q E + q v × B) . r + p . v - h t df/dt) t/h_bar) + e^(-i 2 ((m E_g + m v × B_g + q E + q v × B) . r + p . v - h t df/dt) t/h_bar))/2)/2) +
1/(v_x v_y v_z) (d^3/dt^3 (1 - (e^(i 2 (p . r)/h_bar) + e^(-i 2 (p . r)/h_bar))/2)/2)
ρ = 1/(v_x v_y v_z) (d^3/dt^3 (+1 (e^(i 2 ((m E_g + m v × B_g + q E + q v × B) . r + p . v - h t df/dt) t/h_bar) + e^(-i 2 ((m E_g + m v × B_g + q E + q v × B) . r + p . v - h t df/dt) t/h_bar))/4)) +
1/(v_x v_y v_z) (d^3/dt^3 (-1 (e^(i 2 (p . r)/h_bar) + e^(-i 2 (p . r)/h_bar))/4)) ...(20)
(10) & (11):
ρ_c = 1/(v_x v_y v_z) d^3/dt^3 (1 + (e^(i 2 (p . r)/h_bar) + e^(-i 2 (p . r)/h_bar))/2)/2 ...(21)
(2), (17) & (21):
ρ = 1/(v_x v_y v_z) (d^3/dt^3 (1 - (e^(i 2 ((m E_g + m v × B_g + q E + q v × B) . r + p . v - h t df/dt) t/h_bar) + e^(-i 2 ((m E_g + m v × B_g + q E + q v × B) . r + p . v - h t df/dt) t/h_bar))/2)/2) +
1/(v_x v_y v_z) (d^3/dt^3 (1 + (e^(i 2 (p . r)/h_bar) + e^(-i 2 (p . r)/h_bar))/2)/2)
ρ = 1/(v_x v_y v_z) (d^3/dt^3 (-1 (e^(i 2 ((m E_g + m v × B_g + q E + q v × B) . r + p . v - h t df/dt) t/h_bar) + e^(-i 2 ((m E_g + m v × B_g + q E + q v × B) . r + p . v - h t df/dt) t/h_bar))/2)/2) +
1/(v_x v_y v_z) (d^3/dt^3 (+1 (e^(i 2 (p . r)/h_bar) + e^(-i 2 (p . r)/h_bar))/2)/2)
ρ = -(1/(v_x v_y v_z) (d^3/dt^3 (+1 (e^(i 2 ((m E_g + m v × B_g + q E + q v × B) . r + p . v - h t df/dt) t/h_bar) + e^(-i 2 ((m E_g + m v × B_g + q E + q v × B) . r + p . v - h t df/dt) t/h_bar))/4)) +
1/(v_x v_y v_z) (d^3/dt^3 (-1 (e^(i 2 (p . r)/h_bar) + e^(-i 2 (p . r)/h_bar))/4))) ...(22)
(20) & (22):
ρ^2 = (1/(v_x v_y v_z) (d^3/dt^3 (+1 (e^(i 2 ((m E_g + m v × B_g + q E + q v × B) . r + p . v - h t df/dt) t/h_bar) + e^(-i 2 ((m E_g + m v × B_g + q E + q v × B) . r + p . v - h t df/dt) t/h_bar))/4)) +
1/(v_x v_y v_z) (d^3/dt^3 (-1 (e^(i 2 (p . r)/h_bar) + e^(-i 2 (p . r)/h_bar))/4)))^2 ...(23)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment