Skip to content

Instantly share code, notes, and snippets.

Embed
What would you like to do?
Visualization of SVM Kernels Linear, RBF, Poly and Sigmoid on Python (Adapted from: http://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html)
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import make_moons, make_circles, make_classification
from sklearn.svm import SVC
h = .02 # step size in the mesh
names = ["Linear SVM", "RBF SVM", "Poly SVM", "Sigmoid SVM"]
classifiers = [
SVC(kernel="linear", C=0.025),
SVC(gamma=2, C=1),
SVC(kernel="poly", C=0.025),
SVC(kernel="sigmoid", gamma=2)]
X, y = make_classification(n_features=2, n_redundant=0, n_informative=2,
random_state=1, n_clusters_per_class=1)
rng = np.random.RandomState(2)
X += 2 * rng.uniform(size=X.shape)
linearly_separable = (X, y)
datasets = [make_moons(noise=0.3, random_state=0),
make_circles(noise=0.2, factor=0.5, random_state=1),
linearly_separable
]
figure = plt.figure(figsize=(27, 9))
i = 1
# iterate over datasets
for ds in datasets:
# preprocess dataset, split into training and test part
X, y = ds
X = StandardScaler().fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.4)
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))
# just plot the dataset first
cm = plt.cm.RdBu
cm_bright = ListedColormap(['#FF0000', '#0000FF'])
ax = plt.subplot(len(datasets), len(classifiers) + 1, i)
# Plot the training points
ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright)
# and testing points
ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6)
ax.set_xlim(xx.min(), xx.max())
ax.set_ylim(yy.min(), yy.max())
ax.set_xticks(())
ax.set_yticks(())
i += 1
# iterate over classifiers
for name, clf in zip(names, classifiers):
ax = plt.subplot(len(datasets), len(classifiers) + 1, i)
clf.fit(X_train, y_train)
score = clf.score(X_test, y_test)
# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, m_max]x[y_min, y_max].
if hasattr(clf, "decision_function"):
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
else:
Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1]
# Put the result into a color plot
Z = Z.reshape(xx.shape)
ax.contourf(xx, yy, Z, cmap=cm, alpha=.8)
# Plot also the training points
ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright)
# and testing points
ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright,
alpha=0.6)
ax.set_xlim(xx.min(), xx.max())
ax.set_ylim(yy.min(), yy.max())
ax.set_xticks(())
ax.set_yticks(())
ax.set_title(name)
ax.text(xx.max() - .3, yy.min() + .3, ('%.2f' % score).lstrip('0'),
size=15, horizontalalignment='right')
i += 1
figure.subplots_adjust(left=.02, right=.98)
plt.show()
@WittmannF

This comment has been minimized.

Copy link
Owner Author

@WittmannF WittmannF commented Sep 23, 2016

Output:
kernels

@anas-elghafari

This comment has been minimized.

Copy link

@anas-elghafari anas-elghafari commented Feb 25, 2018

Nice!

@gwerbin

This comment has been minimized.

Copy link

@gwerbin gwerbin commented Oct 31, 2018

Rehosted image here, since your link doesn't seem to work (some HTTPS issue). Nice demo!

@GCPBigData

This comment has been minimized.

Copy link

@GCPBigData GCPBigData commented Jan 16, 2020

Muito bom !!

@TamaraCucumides

This comment has been minimized.

Copy link

@TamaraCucumides TamaraCucumides commented Oct 26, 2020

Nice!!

@Carlitos5336

This comment has been minimized.

Copy link

@Carlitos5336 Carlitos5336 commented Nov 28, 2020

Perfect!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment