import numpy as np | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
from sklearn.metrics import confusion_matrix | |
def cm_analysis(y_true, y_pred, filename, labels, ymap=None, figsize=(10,10)): | |
""" | |
Generate matrix plot of confusion matrix with pretty annotations. | |
The plot image is saved to disk. | |
args: | |
y_true: true label of the data, with shape (nsamples,) | |
y_pred: prediction of the data, with shape (nsamples,) | |
filename: filename of figure file to save | |
labels: string array, name the order of class labels in the confusion matrix. | |
use `clf.classes_` if using scikit-learn models. | |
with shape (nclass,). | |
ymap: dict: any -> string, length == nclass. | |
if not None, map the labels & ys to more understandable strings. | |
Caution: original y_true, y_pred and labels must align. | |
figsize: the size of the figure plotted. | |
""" | |
if ymap is not None: | |
y_pred = [ymap[yi] for yi in y_pred] | |
y_true = [ymap[yi] for yi in y_true] | |
labels = [ymap[yi] for yi in labels] | |
cm = confusion_matrix(y_true, y_pred, labels=labels) | |
cm_sum = np.sum(cm, axis=1, keepdims=True) | |
cm_perc = cm / cm_sum.astype(float) * 100 | |
annot = np.empty_like(cm).astype(str) | |
nrows, ncols = cm.shape | |
for i in range(nrows): | |
for j in range(ncols): | |
c = cm[i, j] | |
p = cm_perc[i, j] | |
if i == j: | |
s = cm_sum[i] | |
annot[i, j] = '%.1f%%\n%d/%d' % (p, c, s) | |
elif c == 0: | |
annot[i, j] = '' | |
else: | |
annot[i, j] = '%.1f%%\n%d' % (p, c) | |
cm = pd.DataFrame(cm, index=labels, columns=labels) | |
cm.index.name = 'Actual' | |
cm.columns.name = 'Predicted' | |
fig, ax = plt.subplots(figsize=figsize) | |
sns.heatmap(cm, annot=annot, fmt='', ax=ax) | |
plt.savefig(filename) |
Hi i am getting:
File "/home/vikash/mediumprjct/evalaute_train_test.py", line 230, in
cm_analysis(actual,predict,labels,'tessstttyyy.png')
File "/home/vikash/mediumprjct/evalaute_train_test.py", line 207, in cm_analysis
cm = confusion_matrix(y_true, y_pred, labels=labels)
File "/usr/local/lib/python2.7/dist-packages/sklearn/metrics/classification.py", line 258, in confusion_matrix
if np.all([l not in y_true for l in labels]):
TypeError: iteration over a 0-d array
Y_TRUE = [u'person', u'country', u'person', u'anthem', u'country', u'sport', u'country', u'person', u'person', u'sport', u'country', u'person', u'country', u'person', u'country', u'country', u'person', u'anthem', u'country', u'country', u'person', u'person', u'person', u'continent', u'person', u'person', u'person', u'person', u'country', u'location', u'location', u'continent', u'person', u'person', u'person', u'rhyme_name', u'country', u'location', u'location', u'location', u'location', u'country', u'person', u'country', u'country', u'sport', u'country', u'person', u'rhyme_name', u'continent', u'country', u'river', u'person', u'country', u'person', u'person', u'informal_place', u'location', u'location', u'country', u'animal', u'country', u'person', u'person', u'country', u'anthem', u'person', u'person', u'person', u'country', u'anthem', u'person', u'country', u'animal']
Y_PRED = [u'person', u'country', u'person', u'anthem', u'country', u'country', u'sport', u'person', u'person', u'sport', u'country', u'person', u'country', u'person', u'country', u'country', u'person', u'anthem', u'country', u'country', u'person', u'person', u'person', u'country', u'person', u'person', u'person', u'person', u'country', u'location', u'location', u'continent', u'person', u'person', u'person', u'rhyme_name', u'country', u'location', u'location', u'location', u'location', u'country', u'person', u'country', u'country', u'sport', u'country', u'person', u'rhyme_name', u'continent', u'country', u'river', u'person', u'country', u'person', u'person', u'missed', u'location', u'location', u'country', u'animal', u'country', u'person', u'person', u'country', u'anthem', u'person', u'person', u'person', u'country', u'anthem', u'person', u'country', u'animal', u'country' ]
labels= [u'person', u'country', u'anthem', u'sport', u'continent', u'location', u'rhyme_name', u'river', u'informal_place', u'animal', u'city', u'capital', u'flower', u'bird', u'informal_date', u'state', u'food', u'phrase_to_translate', u'gdp_nominal', u'direction', u'number', u'volume', u'informal_cause', u'motto', u'color', u'date', u'informal_time', u'angle', u'missed']
can you guide me what is the error.
@vikash512 Your "Y_TRUE" has 74 elements and "Y_PRED" has 75 elements, but the numbers of elements are supposed to be equal.
It's the first time I see this kind of oversized figure. Can you share the data you used (or some fake data) that can reproduce this?
PFA the data at https://drive.google.com/open?id=12Gx_O0Sjn0xocGQ-2jvW7Z03-61my29i
Thanks for prompt response.
Hi Hitvoice - this is awesome! Thanks so much posting this. I'm trying it out and see an odd thing with my binary classification CM. I've posted your version and what I get from using confusion_matrix. You can see that the classes are transposed and I'm wondering if I'm doing something wrong. I'd like to keep this aligned to what confusion_matrix displays so I thought I'd ask.
Hi Hitvoice - this is awesome! Thanks so much posting this. I'm trying it out and see an odd thing with my binary classification CM. I've posted your version and what I get from using confusion_matrix. You can see that the classes are transposed and I'm wondering if I'm doing something wrong. I'd like to keep this aligned to what confusion_matrix displays so I thought I'd ask.
What do you mean by "the classes are transposed"? Do you mean the order of 0 and 1?
Do you mean the order of 0 and 1?
Yes, I was looking to align this with sklearn's confusion matrix for consistency. Perhaps a parameter could be passed to indicate the order since various references have a different convention for the axes.
You can see from the code that the matrix is indeed computed from sklearn's "confusion_matrix" function. How did you get the first figure? If you prefer that kind of style, you can reorder the dataframe columns by cm = cm[cm.columns[::-1]]
before creating the plot.
@hitvoice, it's really appreciated work. how to changet the clf.classes_
to other, for instance my classess are from 0 to 8, but i want to change those labels to string.
@rajeshkalakoti pass the value of ymap
(dict[Any,str]) to cm_analysis
. You can configure the class names in ymap
.
for instance, labels are like "class-1, class-2,class-3, class-4,class-5, class-6,class-7, class-8,classs-9", how to configure it?
@Mahi-Mai
Just replace line 43 with this line
cm = pd.DataFrame(cm_perc, index=labels, columns=labels)