Created
December 31, 2010 03:10
-
-
Save jamis/760675 to your computer and use it in GitHub Desktop.
An implementation of the Aldous-Broder algorithm for generating mazes.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -------------------------------------------------------------------- | |
# An implementation of Aldous-Broder's algorithm for generating mazes. | |
# This is an easy one to implement, but it is also one of the | |
# "dumbest" (meaning least intelligent) algorithms. It is not even | |
# guaranteed to finish, if you get really unlucky with the RNG. | |
# Watching the animation of its progress can be an exercise in | |
# frustration as you find yourself urging the cursor to JUST GO | |
# OVER THERE! Try and it see for yourself. :) | |
# -------------------------------------------------------------------- | |
# NOTE: the display routine used in this script requires a terminal | |
# that supports ANSI escape sequences. Windows users, sorry. :( | |
# -------------------------------------------------------------------- | |
# -------------------------------------------------------------------- | |
# 1. Allow the maze to be customized via command-line parameters | |
# -------------------------------------------------------------------- | |
width = (ARGV[0] || 10).to_i | |
height = (ARGV[1] || width).to_i | |
seed = (ARGV[2] || rand(0xFFFF_FFFF)).to_i | |
srand(seed) | |
grid = Array.new(height) { Array.new(width, 0) } | |
# -------------------------------------------------------------------- | |
# 2. Set up constants to aid with describing the passage directions | |
# -------------------------------------------------------------------- | |
N, S, E, W = 1, 2, 4, 8 | |
DX = { E => 1, W => -1, N => 0, S => 0 } | |
DY = { E => 0, W => 0, N => -1, S => 1 } | |
OPPOSITE = { E => W, W => E, N => S, S => N } | |
# -------------------------------------------------------------------- | |
# 3. A simple routine to emit the maze as ASCII | |
# -------------------------------------------------------------------- | |
def display_maze(grid, cx=nil, cy=nil) | |
print "\e[H" # move to upper-left | |
puts " " + "_" * (grid[0].length * 2 - 1) | |
grid.each_with_index do |row, y| | |
print "|" | |
row.each_with_index do |cell, x| | |
if cx == x && cy == y | |
print "\e[43m" # cursor is yellow | |
elsif cell == 0 | |
print "\e[47m" # unvisited is white | |
end | |
print((cell & S != 0) ? " " : "_") | |
print "\e[0m" | |
if cell & E != 0 | |
print(((cell | row[x+1]) & S != 0) ? " " : "_") | |
else | |
print "|" | |
end | |
end | |
puts | |
end | |
end | |
# -------------------------------------------------------------------- | |
# 4. The Aldous-Broder algorithm | |
# -------------------------------------------------------------------- | |
print "\e[2J" # clear screen | |
x, y = rand(width), rand(height) | |
remaining = width * height - 1 | |
while remaining > 0 | |
display_maze(grid, x, y) | |
sleep 0.02 | |
[N,S,E,W].shuffle.each do |dir| | |
nx, ny = x + DX[dir], y + DY[dir] | |
if nx >= 0 && ny >= 0 && nx < width && ny < height | |
if grid[ny][nx] == 0 | |
grid[y][x] |= dir | |
grid[ny][nx] |= OPPOSITE[dir] | |
remaining -= 1 | |
end | |
x, y = nx, ny | |
break | |
end | |
end | |
end | |
display_maze(grid) | |
# -------------------------------------------------------------------- | |
# 5. Show the parameters used to build this maze, for repeatability | |
# -------------------------------------------------------------------- | |
puts "#{$0} #{width} #{height} #{seed}" |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
This is great.