Skip to content

Instantly share code, notes, and snippets.

Avatar
😀

Jakub Ciechowski jciechowski

😀
View GitHub Profile
View HttpCall.fs
open System.Net.Http
open System.Net.Http.Json
type Rate = { PLN: double }
type ApiResponse =
{ Amount: double
Base: string
Date: string
Rates: Rate }
View tatiana-mac-speaker-rider.md

Speaker Rider

by Tatiana Mac

Before I'll agree to a speaking event, I try to do as much research I can around the event to ensure it aligns with my ethos. I want to share this in case it's helpful to any other speakers.

👐 Speaking comes with immense privilege. I am grateful to all the conference organisers who have brilliantly hosted me. I would love to continue to exercise this privilege to speak at conferences, and use this privilege to make the landscape more accessible and beneficial to tech's most marginalised and suppressed communities.

😫 I wish I didn't have to, but this is long because I provide a lot of explanations for those of you who never had to consider these things. And I will be honest, most thoughtful conferences I've attended check most of these boxes intrinsically, particularly when conference runners are experienced speakers. They get it.

1️⃣ All of these are based on my own ethos. I don't wish to or attempt to speak on behalf of all conference speake

@jciechowski
jciechowski / index.html
Created May 13, 2019
Webinar CodersTrust 09.05.2019 - layout bloga
View index.html
<!DOCTYPE html>
<html>
<head>
<title>Nasz super blog</title>
<link
rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css"
/>
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.8.2/css/all.css" />
@jciechowski
jciechowski / Git branch bash autocomplete *with aliases*
Created Oct 28, 2018 — forked from JuggoPop/Git branch bash autocomplete *with aliases*
Git branch bash autocomplete *with aliases* (add to .bash_profile)
View Git branch bash autocomplete *with aliases*
# To Setup:
# 1) Save the .git-completion.bash file found here:
# https://github.com/git/git/blob/master/contrib/completion/git-completion.bash
# 2) Add the following lines to your .bash_profile, be sure to reload (for example: source ~/.bash_profile) for the changes to take effect:
# Git branch bash completion
if [ -f ~/.git-completion.bash ]; then
. ~/.git-completion.bash
# Add git completion to aliases
View memoi.cs
public class CourseTests
{
[Fact]
public void PlayIncreaseViewers()
{
Func<int, int> doubleX = x => x*2;
var memoized = doubleX.Memoize();
var result = memoized(4);
var obj = memoized(1);
Assert.Equal(result, obj);
View Controller.cs
public PizzaRepository() => _pizzas = new List<Pizza>()
public Maybe<Pizza> Get(int id)
{
var pizza = _pizzas.FirstOrDefault(_ => _.Id == id);
return pizza == null ? Maybe.Empty<Pizza>() : pizza.ToMaybe();
}
View Maybe.cs
public class Maybe<T> : IEnumerable<T>
{
private readonly IEnumerable<T> _values;
public Maybe()
{
_values = new T[0];
}
public Maybe(T value)
View promise.js
manipulateRemoteData: function(url) {
return new Promise((resolve, reject) => {
var result = [];
$.getJSON(url, (json) => {jsonFromUrl = json;
result = jsonFromUrl.people.sort((a, b) => {
if(a.name > b.name) return 1;
if(a.name == b.name) return 0;
return -1;})
});
resolve(result);
View gist:a5d426a073a5f001dca3
#include <stdio.h>
#include <unistd.h>
#include <signal.h>
#include <fcntl.h>
#include <string.h>
#include <stdlib.h>
int descr[2]; //tablica deskryptorow
int main()
View gist:fd6d1f84f8c3861a637e
\subsection{Ograniczenie górne}
Rozpatrzmy zbiór $F =\{S_1,\ldots,S_n\}$ rozłącznych odcinków prostych na płaszczyźnie oraz graf $G(F)$ zawierający $n$ wierzchołków $v_1$,\ldots,$v_n$ takich, że $v_i$ jest sąsiedni z $v_j$ wtedy i tylko wtedy, gdy istnieje punkt $x$ na płaszczyźnie, który widzi przynajmniej jeden punkt na odcinku $S_i$ i $S_j$ tzn. $x$ strzeże oba odcinki $S_i$ oraz $S_j$ \ref{fig:zbior odcinkow rozlacznych}.
Aby udowodnić twierdzenie \ref{straznicy strzezenie} na początku wykażemy, że dla każdego zbioru $F$ rozłącznych odcinków prostych, których jest parzysta liczba $n$, odpowiednio zdefiniowany graf $G(F)$ ma doskonałe skojarzenie (rysunek \ref{fig:zbior odcinkow rozlacznych})
\begin{figure}[ht!]
\centering
\includegraphics{rysunki/g_f.png}
\caption{Zbiór $F$ rozłącznych odcinków oraz odpowiadający mu graf $G(F)$.}
\label{fig:zbior odcinkow rozlacznych}