-
-
Save mblondel/586753 to your computer and use it in GitHub Desktop.
# Mathieu Blondel, September 2010 | |
# License: BSD 3 clause | |
import numpy as np | |
from numpy import linalg | |
import cvxopt | |
import cvxopt.solvers | |
def linear_kernel(x1, x2): | |
return np.dot(x1, x2) | |
def polynomial_kernel(x, y, p=3): | |
return (1 + np.dot(x, y)) ** p | |
def gaussian_kernel(x, y, sigma=5.0): | |
return np.exp(-linalg.norm(x-y)**2 / (2 * (sigma ** 2))) | |
class SVM(object): | |
def __init__(self, kernel=linear_kernel, C=None): | |
self.kernel = kernel | |
self.C = C | |
if self.C is not None: self.C = float(self.C) | |
def fit(self, X, y): | |
n_samples, n_features = X.shape | |
# Gram matrix | |
K = np.zeros((n_samples, n_samples)) | |
for i in range(n_samples): | |
for j in range(n_samples): | |
K[i,j] = self.kernel(X[i], X[j]) | |
P = cvxopt.matrix(np.outer(y,y) * K) | |
q = cvxopt.matrix(np.ones(n_samples) * -1) | |
A = cvxopt.matrix(y, (1,n_samples)) | |
b = cvxopt.matrix(0.0) | |
if self.C is None: | |
G = cvxopt.matrix(np.diag(np.ones(n_samples) * -1)) | |
h = cvxopt.matrix(np.zeros(n_samples)) | |
else: | |
tmp1 = np.diag(np.ones(n_samples) * -1) | |
tmp2 = np.identity(n_samples) | |
G = cvxopt.matrix(np.vstack((tmp1, tmp2))) | |
tmp1 = np.zeros(n_samples) | |
tmp2 = np.ones(n_samples) * self.C | |
h = cvxopt.matrix(np.hstack((tmp1, tmp2))) | |
# solve QP problem | |
solution = cvxopt.solvers.qp(P, q, G, h, A, b) | |
# Lagrange multipliers | |
a = np.ravel(solution['x']) | |
# Support vectors have non zero lagrange multipliers | |
sv = a > 1e-5 | |
ind = np.arange(len(a))[sv] | |
self.a = a[sv] | |
self.sv = X[sv] | |
self.sv_y = y[sv] | |
print "%d support vectors out of %d points" % (len(self.a), n_samples) | |
# Intercept | |
self.b = 0 | |
for n in range(len(self.a)): | |
self.b += self.sv_y[n] | |
self.b -= np.sum(self.a * self.sv_y * K[ind[n],sv]) | |
self.b /= len(self.a) | |
# Weight vector | |
if self.kernel == linear_kernel: | |
self.w = np.zeros(n_features) | |
for n in range(len(self.a)): | |
self.w += self.a[n] * self.sv_y[n] * self.sv[n] | |
else: | |
self.w = None | |
def project(self, X): | |
if self.w is not None: | |
return np.dot(X, self.w) + self.b | |
else: | |
y_predict = np.zeros(len(X)) | |
for i in range(len(X)): | |
s = 0 | |
for a, sv_y, sv in zip(self.a, self.sv_y, self.sv): | |
s += a * sv_y * self.kernel(X[i], sv) | |
y_predict[i] = s | |
return y_predict + self.b | |
def predict(self, X): | |
return np.sign(self.project(X)) | |
if __name__ == "__main__": | |
import pylab as pl | |
def gen_lin_separable_data(): | |
# generate training data in the 2-d case | |
mean1 = np.array([0, 2]) | |
mean2 = np.array([2, 0]) | |
cov = np.array([[0.8, 0.6], [0.6, 0.8]]) | |
X1 = np.random.multivariate_normal(mean1, cov, 100) | |
y1 = np.ones(len(X1)) | |
X2 = np.random.multivariate_normal(mean2, cov, 100) | |
y2 = np.ones(len(X2)) * -1 | |
return X1, y1, X2, y2 | |
def gen_non_lin_separable_data(): | |
mean1 = [-1, 2] | |
mean2 = [1, -1] | |
mean3 = [4, -4] | |
mean4 = [-4, 4] | |
cov = [[1.0,0.8], [0.8, 1.0]] | |
X1 = np.random.multivariate_normal(mean1, cov, 50) | |
X1 = np.vstack((X1, np.random.multivariate_normal(mean3, cov, 50))) | |
y1 = np.ones(len(X1)) | |
X2 = np.random.multivariate_normal(mean2, cov, 50) | |
X2 = np.vstack((X2, np.random.multivariate_normal(mean4, cov, 50))) | |
y2 = np.ones(len(X2)) * -1 | |
return X1, y1, X2, y2 | |
def gen_lin_separable_overlap_data(): | |
# generate training data in the 2-d case | |
mean1 = np.array([0, 2]) | |
mean2 = np.array([2, 0]) | |
cov = np.array([[1.5, 1.0], [1.0, 1.5]]) | |
X1 = np.random.multivariate_normal(mean1, cov, 100) | |
y1 = np.ones(len(X1)) | |
X2 = np.random.multivariate_normal(mean2, cov, 100) | |
y2 = np.ones(len(X2)) * -1 | |
return X1, y1, X2, y2 | |
def split_train(X1, y1, X2, y2): | |
X1_train = X1[:90] | |
y1_train = y1[:90] | |
X2_train = X2[:90] | |
y2_train = y2[:90] | |
X_train = np.vstack((X1_train, X2_train)) | |
y_train = np.hstack((y1_train, y2_train)) | |
return X_train, y_train | |
def split_test(X1, y1, X2, y2): | |
X1_test = X1[90:] | |
y1_test = y1[90:] | |
X2_test = X2[90:] | |
y2_test = y2[90:] | |
X_test = np.vstack((X1_test, X2_test)) | |
y_test = np.hstack((y1_test, y2_test)) | |
return X_test, y_test | |
def plot_margin(X1_train, X2_train, clf): | |
def f(x, w, b, c=0): | |
# given x, return y such that [x,y] in on the line | |
# w.x + b = c | |
return (-w[0] * x - b + c) / w[1] | |
pl.plot(X1_train[:,0], X1_train[:,1], "ro") | |
pl.plot(X2_train[:,0], X2_train[:,1], "bo") | |
pl.scatter(clf.sv[:,0], clf.sv[:,1], s=100, c="g") | |
# w.x + b = 0 | |
a0 = -4; a1 = f(a0, clf.w, clf.b) | |
b0 = 4; b1 = f(b0, clf.w, clf.b) | |
pl.plot([a0,b0], [a1,b1], "k") | |
# w.x + b = 1 | |
a0 = -4; a1 = f(a0, clf.w, clf.b, 1) | |
b0 = 4; b1 = f(b0, clf.w, clf.b, 1) | |
pl.plot([a0,b0], [a1,b1], "k--") | |
# w.x + b = -1 | |
a0 = -4; a1 = f(a0, clf.w, clf.b, -1) | |
b0 = 4; b1 = f(b0, clf.w, clf.b, -1) | |
pl.plot([a0,b0], [a1,b1], "k--") | |
pl.axis("tight") | |
pl.show() | |
def plot_contour(X1_train, X2_train, clf): | |
pl.plot(X1_train[:,0], X1_train[:,1], "ro") | |
pl.plot(X2_train[:,0], X2_train[:,1], "bo") | |
pl.scatter(clf.sv[:,0], clf.sv[:,1], s=100, c="g") | |
X1, X2 = np.meshgrid(np.linspace(-6,6,50), np.linspace(-6,6,50)) | |
X = np.array([[x1, x2] for x1, x2 in zip(np.ravel(X1), np.ravel(X2))]) | |
Z = clf.project(X).reshape(X1.shape) | |
pl.contour(X1, X2, Z, [0.0], colors='k', linewidths=1, origin='lower') | |
pl.contour(X1, X2, Z + 1, [0.0], colors='grey', linewidths=1, origin='lower') | |
pl.contour(X1, X2, Z - 1, [0.0], colors='grey', linewidths=1, origin='lower') | |
pl.axis("tight") | |
pl.show() | |
def test_linear(): | |
X1, y1, X2, y2 = gen_lin_separable_data() | |
X_train, y_train = split_train(X1, y1, X2, y2) | |
X_test, y_test = split_test(X1, y1, X2, y2) | |
clf = SVM() | |
clf.fit(X_train, y_train) | |
y_predict = clf.predict(X_test) | |
correct = np.sum(y_predict == y_test) | |
print "%d out of %d predictions correct" % (correct, len(y_predict)) | |
plot_margin(X_train[y_train==1], X_train[y_train==-1], clf) | |
def test_non_linear(): | |
X1, y1, X2, y2 = gen_non_lin_separable_data() | |
X_train, y_train = split_train(X1, y1, X2, y2) | |
X_test, y_test = split_test(X1, y1, X2, y2) | |
clf = SVM(gaussian_kernel) | |
clf.fit(X_train, y_train) | |
y_predict = clf.predict(X_test) | |
correct = np.sum(y_predict == y_test) | |
print "%d out of %d predictions correct" % (correct, len(y_predict)) | |
plot_contour(X_train[y_train==1], X_train[y_train==-1], clf) | |
def test_soft(): | |
X1, y1, X2, y2 = gen_lin_separable_overlap_data() | |
X_train, y_train = split_train(X1, y1, X2, y2) | |
X_test, y_test = split_test(X1, y1, X2, y2) | |
clf = SVM(C=0.1) | |
clf.fit(X_train, y_train) | |
y_predict = clf.predict(X_test) | |
correct = np.sum(y_predict == y_test) | |
print "%d out of %d predictions correct" % (correct, len(y_predict)) | |
plot_contour(X_train[y_train==1], X_train[y_train==-1], clf) | |
test_soft() |
I need a code to implement data sets in java
Typeerror: 'A' must be a 'd' matrix with 16 columns
What am i doing wrong?
Can you pls write up a code for svm classification for images too?
@xitizme78 : your error usually means that the training labels you're giving are of type int. They should be of type float.
Do : y = y.astype(float)
how can i do a test to my data ?
Thanks man!...
The corresponding blog post is archived here
The corresponding blog post is archived here
thank you !
How can I modify this code to implement a SVR?
Here's the theoritical explanation of SVR which you can find here
Thx!
if anyone is interested in a possible implementation of an SVR according to the pdf linked by @guruprasaad123, they can find the code here: https://github.com/dmeoli/optiml/blob/master/optiml/ml/svm/_base.py
@mblondel I am really late to the party but feel like line 75 is incorrect. Shouldn't it me self.w[n] . Do correct me if i am wrong on this.
Hi, the cvxopt QP solver is much slower than I expect when I run the train data. Is there any way to improve the runtime?